ﻻ يوجد ملخص باللغة العربية
HW Vir systems are rare evolved eclipsing binaries composed by a hot compact star and a low-mass main-sequence star in a close orbit. These systems provide a direct way to measure the fundamental properties, e.g. masses and radii, of their components, hence they are crucial to study the formation of sdB stars and low-mass white dwarfs, the common-envelope phase, and the pre-phase of cataclysmic variables. Here we present a detailed study of HS 2231+2441, an HW Vir type system, by analysing BVR$_C$I$_C$ photometry and phase-resolved optical spectroscopy. The spectra of this system, which are dominated by the primary component features, were fitted using NLTE models providing effective temperature Teff = 28500$pm$500 K, surface gravity log g = 5.40$pm$0.05 cm s$^{-2}$, and helium abundance log(n(He)/n(H)) = -2.52$pm$0.07. Geometrical orbit and physical parameters were derived by modelling simultaneously the photometric and spectroscopic data using the Wilson-Devinney code. We derive two possible solutions for HS 2231+2441 that provide components masses: M$_1$ = 0.19 M$_{odot}$ and M$_2$ = 0.036 M$_{odot}$ or M$_1$ = 0.288 M$_{odot}$ and M$_2$ = 0.046 M$_{odot}$. Considering the possible evolutionary channels to form a compact hot star, the primary of HS 2231+2441 probably evolved through the red-giant branch scenario and does not have a helium-burning core, which is consistent with a low-mass white dwarf. Both solutions are consistent with a brown dwarf as the secondary.
EPIC 216747137 is a new HW~Virginis system discovered by the Kepler spacecraft during its K2 second life. Like the other HW Vir systems, EPIC 216747137 is a post-common-envelope eclipsing binary consisting of a hot subluminous star and a cool low-mas
We present the discovery of only the third brown dwarf known to eclipse a non-accreting white dwarf. Gaia parallax information and multi-colour photometry confirm that the white dwarf is cool (9950$pm$150K) and has a low mass (0.45$pm$0.05~MSun), and
We present the discovery of the first T dwarf + white dwarf binary system LSPM 1459+0857AB, confirmed through common proper motion and spectroscopy. The white dwarf is a high proper motion object from the LSPM catalogue that we confirm spectroscopica
We report the discovery and the analysis of the short timescale binary-lens microlensing event, MOA-2015-BLG-337. The lens system could be a planetary system with a very low mass host, around the brown dwarf/planetary mass boundary, or a brown dwarf
HIP96515A is a double-lined spectroscopic binary with a visual companion (HIP96515B) at 8.6 arcsec. It is included in the SACY catalog as a potential young star and classified as an eclipsing binary in the ASAS Catalog. We have analyzed spectroscopic