ترغب بنشر مسار تعليمي؟ اضغط هنا

Quarter-Flux Hofstadter Lattice in Qubit-Compatible Microwave Cavity Array

62   0   0.0 ( 0 )
 نشر من قبل Clai Owens
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Topological- and strongly-correlated- materials are exciting frontiers in condensed matter physics, married prominently in studies of the fractional quantum hall effect [1]. There is an active effort to develop synthetic materials where the microscopic dynamics and ordering arising from the interplay of topology and interaction may be directly explored. In this work we demonstrate a novel architecture for exploration of topological matter constructed from tunnel-coupled, time-reversalbroken microwave cavities that are both low loss and compatible with Josephson junction-mediated interactions [2]. Following our proposed protocol [3] we implement a square lattice Hofstadter model at a quarter flux per plaquette ({alpha} = 1/4), with time-reversal symmetry broken through the chiral Wannier-orbital of resonators coupled to Yttrium-Iron-Garnet spheres. We demonstrate site-resolved spectroscopy of the lattice, time-resolved dynamics of its edge channels, and a direct measurement of the dispersion of the edge channels. Finally, we demonstrate the flexibility of the approach by erecting a tunnel barrier investigating dynamics across it. With the introduction of Josephson-junctions to mediate interactions between photons, this platform is poised to explore strongly correlated topological quantum science for the first time in a synthetic system.

قيم البحث

اقرأ أيضاً

186 - Ying Li , M.X. Huo , Z. Song 2008
We propose a feasible scheme to realize a spin network via a coupled cavity array with the appropriate arrangement of external multi-driving lasers. It is demonstrated that the linear photon-like dispersion is achievable and this property opens up th e possibility of realizing the pre-engineered spin network which is beneficial to quantum information processing.
195 - B. Foxen , J.Y. Mutus , E. Lucero 2017
We present a fabrication process for fully superconducting interconnects compatible with superconducting qubit technology. These interconnects allow for the 3D integration of quantum circuits without introducing lossy amorphous dielectrics. They are composed of indium bumps several microns tall separated from an aluminum base layer by titanium nitride which serves as a diffusion barrier. We measure the whole structure to be superconducting (transition temperature of 1.1$,$K), limited by the aluminum. These interconnects have an average critical current of 26.8$,$mA, and mechanical shear and thermal cycle testing indicate that these devices are mechanically robust. Our process provides a method that reliably yields superconducting interconnects suitable for use with superconducting qubits.
Using an analytically solvable model, we show that a qubit array-based detector allows to achieve the fundamental Heisenberg limit in detecting single photons. In case of superconducting qubits, this opens new opportunities for quantum sensing and communications in the important microwave range.
We report the experimental realization of a 3D capacitively-shunt superconducting flux qubit with long coherence times. At the optimal flux bias point, the qubit demonstrates energy relaxation times in the 60-90 $mu$s range, and Hahn-echo coherence t ime of about 80 $mu$s which can be further improved by dynamical decoupling. Qubit energy relaxation can be attributed to quasiparticle tunneling, while qubit dephasing is caused by flux noise away from the optimal point. Our results show that 3D c-shunt flux qubits demonstrate improved performance over other types of flux qubits which is advantageous for applications such as quantum magnetometry and spin sensing.
Three-dimensional (3D) superconducting microwave cavities with large mode volumes typically have high quality factors ($>10^6$). This is due to a reduced sensitivity to surface dielectric losses, which is the limiting source of dissipation in two-dim ensional transmission line resonators. In recent years, 3D microwave cavities have been extensively used for coupling and interacting with superconducting quantum bits (qubits), providing a versatile platform for quantum information processing and hybrid quantum systems. A current issue that has arisen is that 3D superconducting cavities do not permit magnetic field control of qubits embedded in these cavities. In contrast, microwave cavities made of normal metals can be transparent to magnetic fields, but experience a much lower quality factor ($sim 10^4$), which negates many of the advantages of the 3D architecture. In an attempt to create a device that bridges a gap between these two types of cavities, having magnetic field control and high quality factor, we have created a hybrid 3D cavity. This new cavity is primarily composed of aluminium but also contains a small copper insert. We measured the internal quality factor of the hybrid cavity to be $102000$, which is an order of magnitude improvement over all previously tested copper cavities. An added benefit to that our hybrid cavity possesses is that it also provides an improved thermal link to the sample that superconducting cavities alone cannot provide. In order to demonstrate precise magnetic control within the cavity, we performed spectroscopy of three superconducting qubits placed in the cavity, where individual control of each qubits frequency was exerted with small wire coils attached to the cavity. A large improvement in quality factor and magnetic field control makes this 3D hybrid cavity an attractive new platform for circuit quantum electrodynamics experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا