ﻻ يوجد ملخص باللغة العربية
The composition dependence of gravitational constant $G$ is measured at the millimeter scale to test the weak equivalence principle, which may be violated at short range through new Yukawa interactions such as the dilaton exchange force. A torsion balance on a turning table with two identical tungsten targets surrounded by two different attractor materials (copper and aluminum) is used to measure gravitational torque by means of digital measurements of a position sensor. Values of the ratios $tilde{G}_{Al-W}/tilde{G}_{Cu-W} -1$ and $tilde{G}_{Cu-W}/G_{N} -1$ were $(0.9 pm 1.1_{mathrm{sta}} pm 4.8_{mathrm{sys}}) times 10^{-2}$ and $ (0.2 pm 0.9_{mathrm{sta}} pm 2.1_{mathrm{sys}}) times 10^{-2}$ , respectively; these were obtained at a center to center separation of 1.7 cm and surface to surface separation of 4.5 mm between target and attractor, which is consistent with the universality of $G$. A weak equivalence principle (WEP) violation parameter of $eta_{Al-Cu}(rsim 1: mathrm{cm})=(0.9 pm 1.1_{mathrm{sta}} pm 4.9_{mathrm{sys}}) times 10^{-2} $ at the shortest range of around 1 cm was also obtained.
We report an experimental test of non-Newtonian gravitational forces at mi- crometer range. To experimentally subtract off the Casimir force and the electrostatic force background, differential force measurements were performed by sensing the lateral
We consider the AQUAL theory - a theory of modified gravity capable of resolving the missing mass problem - and study its predictions for micro gravity tests at the gravitational saddle points of the Solar system. We report that the AQUAL model enhan
Current limits on violation of local Lorentz invariance in the photon sector are derived mainly from experiments that search for a spatial anisotropy in the speed of light. The presently operating gravitational wave detectors are Michelson interferom
We propose a method to constrain the variation of the gravitational constant $G$ with cosmic time using gravitational-wave (GW) observations of merging binary neutron stars. The method essentially relies on the fact that the maximum and minimum allow
We report on a new test of the gravitational redshift and thus of local position invariance, an integral part of the Einstein equivalence principle, which is the foundation of general relativity and all metric theories of gravitation. We use data spa