ترغب بنشر مسار تعليمي؟ اضغط هنا

Timing by Stellar Pulsations as an Exoplanet Discovery Method

58   0   0.0 ( 0 )
 نشر من قبل J. J. Hermes
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. J. Hermes




اسأل ChatGPT حول البحث

The stable oscillations of pulsating stars can serve as accurate timepieces, which may be monitored for the influence of exoplanets. An external companion gravitationally tugs the host star, causing periodic changes in pulsation arrival times. This method is most sensitive to detecting substellar companions around the hottest pulsating stars, especially compact remnants like white dwarfs and hot subdwarfs, as well as delta Scuti variables (A stars). However, it is applicable to any pulsating star with sufficiently stable oscillations. Care must be taken to ensure that the changes in pulsation arrival times are not caused by intrinsic stellar variability; an external, light-travel-time effect from an exoplanet identically affects all pulsation modes. With more long-baseline photometric campaigns coming online, this method is yielding new detections of substellar companions.



قيم البحث

اقرأ أيضاً

In this work we quantify the effect of an unresolved companion star on the derived stellar parameters of the primary star if a blended spectrum is fit assuming the star is single. Fitting tools that determine stellar parameters from spectra typically fit for a single star, but we know that up to half of all exoplanet host stars may have one or more companion stars. We use high-resolution spectra of planet host stars in the Kepler field from the California-Kepler Survey to create simulated binaries; we select 8 stellar pairs and vary the contribution of the secondary star, then determine stellar parameters with SpecMatch-Emp and compare them to the parameters derived for the primary star alone. We find that in most cases the effective temperature, surface gravity, metallicity, and stellar radius derived from the composite spectrum are within 2-3 $sigma$ of the values determined from the unblended spectrum, but the deviations depend on the properties of the two stars. Relatively bright companion stars that are similar to the primary star have the largest effect on the derived parameters; in these cases the stellar radii can be overestimated by up to 60%. We find that metallicities are generally underestimated, with values up to 8 times smaller than the typical uncertainty in [Fe/H]. Our study shows that follow-up observations are necessary to detect or set limits on stellar companions of planetary host stars so that stellar (and planet) parameters are as accurate as possible.
136 - I. McDonald , E. Kerins , M. Penny 2014
The Exoplanet Euclid Legacy Survey (ExELS) proposes to determine the frequency of cold exoplanets down to Earth mass from host separations of ~1 AU out to the free-floating regime by detecting microlensing events in Galactic Bulge. We show that ExELS can also detect large numbers of hot, transiting exoplanets in the same population. The combined microlensing+transit survey would allow the first self-consistent estimate of the relative frequencies of hot and cold sub-stellar companions, reducing biases in comparing near-field radial velocity and transiting exoplanets with far-field microlensing exoplanets. The age of the Bulge and its spread in metallicity further allows ExELS to better constrain both the variation of companion frequency with metallicity and statistically explore the strength of star-planet tides. We conservatively estimate that ExELS will detect ~4100 sub-stellar objects, with sensitivity typically reaching down to Neptune-mass planets. Of these, ~600 will be detectable in both Euclids VIS (optical) channel and NISP H-band imager, with ~90% of detections being hot Jupiters. Likely scenarios predict a range of 2900-7000 for VIS and 400-1600 for H-band. Twice as many can be expected in VIS if the cadence can be increased to match the 20-minute H-band cadence. The separation of planets from brown dwarfs via Doppler boosting or ellipsoidal variability will be possible in a handful of cases. Radial velocity confirmation should be possible in some cases, using 30-metre-class telescopes. We expect secondary eclipses, and reflection and emission from planets to be detectable in up to ~100 systems in both VIS and NISP-H. Transits of ~500 planetary-radius companions will be characterised with two-colour photometry and ~40 with four-colour photometry (VIS,YJH), and the albedo of (and emission from) a large sample of hot Jupiters in the H-band can be explored statistically.
Transmission spectra probe the atmospheres of transiting exoplanets, but these observations are also subject to signals introduced by magnetic active regions on host stars. Here we outline scientific opportunities in the next decade for providing use ful constraints on stellar photospheres and inform interpretations of transmission spectra of the smallest ($R<4,R_{odot}$) exoplanets. We identify and discuss four primary opportunities: (1) refining stellar magnetic active region properties through exoplanet crossing events; (2) spectral decomposition of active exoplanet host stars; (3) joint retrievals of stellar photospheric and planetary atmospheric properties with studies of transmission spectra; and (4) continued visual transmission spectroscopy studies to complement longer-wavelength studies from $textit{JWST}$. We make five recommendations to the Astro2020 Decadal Survey Committee: (1) identify the transit light source (TLS) effect as a challenge to precise exoplanet transmission spectroscopy and an opportunity ripe for scientific advancement in the coming decade; (2) include characterization of host star photospheric heterogeneity as part of a comprehensive research strategy for studying transiting exoplanets; (3) support the construction of ground-based extremely large telescopes (ELTs); (4) support multi-disciplinary research teams that bring together the heliophysics, stellar physics, and exoplanet communities to further exploit transiting exoplanets as spatial probes of stellar photospheres; and (5) support visual transmission spectroscopy efforts as complements to longer-wavelength observational campaigns with $textit{JWST}$.
The Maunakea Spectroscopic Explorer (MSE) is a planned 11.25-m aperture facility with a 1.5 square degree field of view that will be fully dedicated to multi-object spectroscopy. A rebirth of the 3.6m Canada-France-Hawaii Telescope on Maunakea, MSE w ill use 4332 fibers operating at three different resolving powers (R ~ 2500, 6000, 40000) across a wavelength range of 0.36-1.8mum, with dynamical fiber positioning that allows fibers to match the exposure times of individual objects. MSE will enable spectroscopic surveys with unprecedented scale and sensitivity by collecting millions of spectra per year down to limiting magnitudes of g ~ 20-24 mag, with a nominal velocity precision of ~100 m/s in high-resolution mode. This white paper describes science cases for stellar astrophysics and exoplanet science using MSE, including the discovery and atmospheric characterization of exoplanets and substellar objects, stellar physics with star clusters, asteroseismology of solar-like oscillators and opacity-driven pulsators, studies of stellar rotation, activity, and multiplicity, as well as the chemical characterization of AGB and extremely metal-poor stars.
162 - Paul Robertson 2015
We present an in-depth analysis of stellar activity and its effects on radial velocity (RV) for the M2 dwarf GJ 176 based on spectra taken over 10 years from the High Resolution Spectrograph on the Hobby-Eberly Telescope. These data are supplemented with spectra from previous observations with the HIRES and HARPS spectrographs, and V- and R-band photometry taken over 6 years at the Dyer and Fairborn observatories. Previous studies of GJ 176 revealed a super-Earth exoplanet in an 8.8-day orbit. However, the velocities of this star are also known to be contaminated by activity, particularly at the 39-day stellar rotation period. We have examined the magnetic activity of GJ 176 using the sodium I D lines, which have been shown to be a sensitive activity tracer in cool stars. In addition to rotational modulation, we see evidence of a long-term trend in our Na I D index, which may be part of a long-period activity cycle. The sodium index is well correlated with our RVs, and we show that this activity trend drives a corresponding slope in RV. Interestingly, the rotation signal remains in phase in photometry, but not in the spectral activity indicators. We interpret this phenomenon as the result of one or more large spot complexes or active regions which dominate the photometric variability, while the spectral indices are driven by the overall magnetic activity across the stellar surface. In light of these results, we discuss the potential for correcting activity signals in the RVs of M dwarfs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا