ترغب بنشر مسار تعليمي؟ اضغط هنا

Coarse graining the Bethe-Goldstone equation: nucleon-nucleon high momentum components

74   0   0.0 ( 0 )
 نشر من قبل Ignacio Ruiz
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The delta-shell representation of the nuclear force allows a simplified treatment of nuclear correlations. We show how this applies to the Bethe-Goldstone equation as an integral equation in coordinate space with a few mesh points, which is solved by inversion of a 5-dimensional square matrix in the single channel cases and a $10times10$ matrix for the tensor-coupled channels. This allows us to readily obtain the high momentum distribution, for all partial waves, of a back-to-back correlated nucleon pair in nuclear matter. We find that the probability of finding a high-momentum correlated neutron-proton pair is about 18 times that of a proton-proton one, as a result of the strong tensor force, thus confirming in an independent way previous results and measurements.

قيم البحث

اقرأ أيضاً

190 - R. Machleidt , I. Slaus 2001
We review the major progress of the past decade concerning our understanding of the nucleon-nucleon interaction. The focus is on the low-energy region (below pion production threshold), but a brief outlook towards higher energies is also given. The i tems discussed include charge-dependence, the precise value of the $pi NN$ coupling constant, phase shift analysis and high-precision NN data and potentials. We also address the issue of a proper theory of nuclear forces. Finally, we summarize the essential open questions that future research should be devoted to.
96 - Y. G. Ma , Y. B. Wei , W. Q. Shen 2006
Momentum correlation functions of the nucleon-nucleon pairs are presented for reactions with C isotopes bombarding a $^{12} rm C$ target within the framework of the isospin-dependent quantum molecular dynamics model. The binding-energy dependence of the momentum correlation functions is also explored, and other factors that have an influence on momentum correlation functions are investigated. These factors include momentum-dependent nuclear equation of state, in-medium nucleon-nucleon cross sections, impact parameters, total pair momenta, and beam energy. In particular, the rise and the fall of the strength of momentum correlation functions at lower relative momentum are shown with an increase in beam energy.
High-momentum components of nuclei are essential for understanding the underlying inter-nucleon correlations in nuclei. We perform the comprehensive analysis for the origin of the high-momentum components of $^4$He in the framework of Tensor-optimize d High-momentum Antisymmetrized Molecular Dynamics (TO-HMAMD), which is a completely variational approach as an $ab$ $initio$ theory starting from the bare nucleon-nucleon ($NN$) interaction. The analytical derivations are provided for the nucleon momentum distribution of the Antisymmetrized Momentum Dynamics (AMD) wave functions, with subtraction of center-of-mass motion. The nucleon momentum distribution for $^4$He is calculated by applying a new expansion technique to our $ab$ $initio$ wave function, and agrees with the values extracted from experimental data up to the high-momentum region. Fine-grained analysis is performed for the high-momentum components in $^4$He with respect to different nucleon correlations. Contributions from tensor, central with short-range, and many-body correlations are extracted from the nucleon momentum distributions. The manifestation of tensor correlation around 2 fm$^{-1}$ region is explicitly confirmed by comparing the momentum distributions predicted using different types of $NN$ interactions with and without the tensor force.
Motivated by the recent measurement of proton-proton spin-correlation parameters up to 2.5 GeV laboratory energy, we investigate models for nucleon-nucleon (NN) scattering above 1 GeV. Signatures for a gradual failure of the traditional meson model w ith increasing energy can be clearly identified. Since spin effects are large up to tens of GeV, perturbative QCD cannot be invoked to fix the problems. We discuss various theoretical scenarios and come to the conclusion that we do not have a clear phenomenological understanding of the spin-dependence of the NN interaction above 1 GeV.
The proton-proton momentum correlation function from different rapidity regions are systematically investigated for the Au + Au collisions at different impact parameters and different energies from 400$A$ MeV to 1500$A$ MeV in the framework of the is ospin-dependent quantum molecular dynamics model complemented by the $Lednickacute{y}$ and $Lyuboshitz$ analytical method. In particular, in-medium nucleon-nucleon cross section dependence of the correlation function is brought into focus, while the impact parameter and energy dependence of the momentum correlation function are also explored. The sizes of the emission source are extracted by fitting the momentum correlation functions using the Gaussian source method. We find that the in-medium nucleon-nucleon cross section obviously influence the proton-proton momentum correlation function which is from the whole rapidity or projectile/target rapidity region at smaller impact parameters, but there is no effect on the mid-rapidity proton-proton momentum correlation function, which indicates that the emission mechanism differs between projectile/target rapidity and mid-rapidity protons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا