ترغب بنشر مسار تعليمي؟ اضغط هنا

Design rules for modulation-doped AlAs quantum wells

265   0   0.0 ( 0 )
 نشر من قبل Edwin Yoonjang Chung
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thanks to their multi-valley, anisotropic, energy band structure, two-dimensional electron systems (2DESs) in modulation-doped AlAs quantum wells (QWs) provide a unique platform to investigate electron interaction physics and ballistic transport. Indeed, a plethora of phenomena unseen in other 2DESs have been observed over the past decade. However, a foundation for sample design is still lacking for AlAs 2DESs, limiting the means to achieve optimal quality samples. Here we present a systematic study on the fabrication of modulation-doped AlAs and GaAs QWs over a wide range of AlxGa1-xAs barrier alloy compositions. Our data indicate clear similarities in modulation doping mechanisms for AlAs and GaAs, and provide guidelines for the fabrication of very high quality AlAs 2DESs. We highlight the unprecedented quality of the fabricated AlAs samples by presenting the magnetotransport data for low density (~1X1011 cm2) AlAs 2DESs that exhibit high-order fractional quantum Hall signatures.

قيم البحث

اقرأ أيضاً

We report on the growth and electrical characterization of modulation-doped Al0.24Ga0.76As/AlxGa1-xAs/Al0.24Ga0.76As quantum wells with mole fractions as low as x=0.00057. Such structures will permit detailed studies of the impact of alloy disorder i n the fractional quantum Hall regime. At zero magnetic field, we extract an alloy scattering rate of 24 ns-1 per %Al. Additionally we find that for x as low as 0.00057 in the quantum well, alloy scattering becomes the dominant mobility-limiting scattering mechanism in ultra-high purity two-dimensional electron gases typically used to study the fragile nu=5/2 and nu=12/5 fractional quantum Hall states.
We measure the photoluminescence spectra for an array of modulation doped, T-shaped quantum wires as a function of the 1d density n_e which is modulated with a surface gate. We present self-consistent electronic structure calculations for this device which show a bandgap renormalization which, when corrected for excitonic energy and its screening, are largely insensitive to n_e and which are in quantitatively excellent agreement with the data. The calculation (cf. cond-mat/9908349) shows the importance of including orthogonality between the screening electrons and the electron(s) bound to the hole. The calculations show that electron and hole remain bound up to 3 x 10^6 cm^-1 and that therefore the stability of the exciton far exceeds the conservative Mott criterion.
The quantum anomalous Hall effect has recently been observed experimentally in thin films of Cr doped (Bi,Sb)$_2$Te$_3$ at a low temperature ($sim$ 30mK). In this work, we propose realizing the quantum anomalous Hall effect in more conventional dilut ed magnetic semiconductors with doped InAs/GaSb type II quantum wells. Based on a four band model, we find an enhancement of the Curie temperature of ferromagnetism due to band edge singularities in the inverted regime of InAs/GaSb quantum wells. Below the Curie temperature, the quantum anomalous Hall effect is confirmed by the direct calculation of Hall conductance. The parameter regime for the quantum anomalous Hall phase is identified based on the eight-band Kane model. The high sample quality and strong exchange coupling make magnetically doped InAs/GaSb quantum wells good candidates for realizing the quantum anomalous Hall insulator at a high temperature.
295 - G. Yusa , H. Shtrikman , 2000
We study the evolution of the absorption spectrum of a modulation doped GaAs/AlGaAs semiconductor quantum well with decreasing the carrier density. We find that there is a critical density which marks the transition from a Fermi edge singularity to a hydrogen-like behavior. At this density both the lineshape and the transitions energies of the excitons change. We study the density dependence of the singularity exponent $alpha $ and show that disorder plays an important role in determining the energy scale over which it grows.
We demonstrate tuning of two-dimensional (2D) plasmon spectrum in modulation-doped AlAs quantum wells via the application of in-plane uniaxial strain. We show that dramatic change in the plasma spectrum is caused by strain-induced redistribution of c harge carriers between anisotropic $X_x$ and $X_y$ valleys. Discovered piezoplasmonic effect provides a tool to study the band structure of 2D systems. We use piezoplasmonic effect to measure how the inter-valley energy splitting depends on the deformation. This dependency yields the AlAs deformation potential of $E_2 = (5.6 pm 0.3)$~eV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا