ترغب بنشر مسار تعليمي؟ اضغط هنا

Expressive Stream Reasoning with Laser

87   0   0.0 ( 0 )
 نشر من قبل Harald Beck
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

An increasing number of use cases require a timely extraction of non-trivial knowledge from semantically annotated data streams, especially on the Web and for the Internet of Things (IoT). Often, this extraction requires expressive reasoning, which is challenging to compute on large streams. We propose Laser, a new reasoner that supports a pragmatic, non-trivial fragment of the logic LARS which extends Answer Set Programming (ASP) for streams. At its core, Laser implements a novel evaluation procedure which annotates formulae to avoid the re-computation of duplicates at multiple time points. This procedure, combined with a judicious implementation of the LARS operators, is responsible for significantly better runtimes than the ones of other state-of-the-art systems like C-SPARQL and CQELS, or an implementation of LARS which runs on the ASP solver Clingo. This enables the application of expressive logic-based reasoning to large streams and opens the door to a wider range of stream reasoning use cases.



قيم البحث

اقرأ أيضاً

119 - Gulay Unel 2018
Data streams occur widely in various real world applications. The research on streaming data mainly focuses on the data management, query evaluation and optimization on these data, however the work on reasoning procedures for streaming knowledge base s on both the assertional and terminological levels is very limited. Typically reasoning services on large knowledge bases are very expensive, and need to be applied continuously when the data is received as a stream. Hence new techniques for optimizing this continuous process is needed for developing efficient reasoners on streaming data. In this paper, we survey the related research on reasoning on expressive logics that can be applied to this setting, and point to further research directions in this area.
74 - Mitko Yanchev 2019
In this paper syntactic objects---concept constructors called part restrictions which realize rational grading are considered in Description Logics (DLs). Being able to convey statements about a rational part of a set of successors, part restrictions essentially enrich the expressive capabilities of DLs. We examine an extension of well-studied DL ALCQIHR+ with part restrictions, and prove that the reasoning in the extended logic is still decidable. The proof uses tableaux technique augmented with indices technique, designed for dealing with part restrictions.
The theory of finite term algebras provides a natural framework to describe the semantics of functional languages. The ability to efficiently reason about term algebras is essential to automate program analysis and verification for functional or impe rative programs over algebraic data types such as lists and trees. However, as the theory of finite term algebras is not finitely axiomatizable, reasoning about quantified properties over term algebras is challenging. In this paper we address full first-order reasoning about properties of programs manipulating term algebras, and describe two approaches for doing so by using first-order theorem proving. Our first method is a conservative extension of the theory of term algebras using a finite number of statements, while our second method relies on extending the superposition calculus of first-order theorem provers with additional inference rules. We implemented our work in the first-order theorem prover Vampire and evaluated it on a large number of algebraic data type benchmarks, as well as game theory constraints. Our experimental results show that our methods are able to find proofs for many hard problems previously unsolved by state-of-the-art methods. We also show that Vampire implementing our methods outperforms existing SMT solvers able to deal with algebraic data types.
Graded modal types systems and coeffects are becoming a standard formalism to deal with context-dependent computations where code usage plays a central role. The theory of program equivalence for modal and coeffectful languages, however, is considera bly underdeveloped if compared to the denotational and operational semantics of such languages. This raises the question of how much of the theory of ordinary program equivalence can be given in a modal scenario. In this work, we show that coinductive equivalences can be extended to a modal setting, and we do so by generalising Abramskys applicative bisimilarity to coeffectful behaviours. To achieve this goal, we develop a general theory of ternary program relations based on the novel notion of a comonadic lax extension, on top of which we define a modal extension of Abramskys applicative bisimilarity (which we dub modal applicative bisimilarity). We prove such a relation to be a congruence, this way obtaining a compositional technique for reasoning about modal and coeffectful behaviours. But this is not the end of the story: we also establish a correspondence between modal program relations and program distances. This correspondence shows that modal applicative bisimilarity and (a properly extended) applicative bisimilarity distance coincide, this way revealing that modal program equivalences and program distances are just two sides of the same coin.
99 - Paolo Torrini 2015
In functional programming, datatypes a la carte provide a convenient modular representation of recursive datatypes, based on their initial algebra semantics. Unfortunately it is highly challenging to implement this technique in proof assistants that are based on type theory, like Coq. The reason is that it involves type definitions, such as those of type-level fixpoint operators, that are not strictly positive. The known work-around of impredicative encodings is problematic, insofar as it impedes conventional inductive reasoning. Weak induction principles can be used instead, but they considerably complicate proofs. This paper proposes a novel and simpler technique to reason inductively about impredicative encodings, based on Mendler-style induction. This technique involves dispensing with dependent induction, ensuring that datatypes can be lifted to predicates and relying on relational formulations. A case study on proving subject reduction for structural operational semantics illustrates that the approach enables modular proofs, and that these proofs are essentially similar to conventional ones.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا