ﻻ يوجد ملخص باللغة العربية
In large-$N_c$ conformal field theories with classical holographic duals, inverse coupling constant corrections are obtained by considering higher-derivative terms in the corresponding gravity theory. In this work, we use type IIB supergravity and bottom-up Gauss-Bonnet gravity to study the dynamics of boost-invariant Bjorken hydrodynamics at finite coupling. We analyze the time-dependent decay properties of non-local observables (scalar two-point functions and Wilson loops) probing the different models of Bjorken flow and show that they can be expressed generically in terms of a few field theory parameters. In addition, our computations provide an analytically quantifiable probe of the coupling-dependent validity of hydrodynamics at early times in a simple model of heavy-ion collisions, which is an observable closely analogous to the hydrodynamization time of a quark-gluon plasma. We find that to third order in the hydrodynamic expansion, the convergence of hydrodynamics is improved and that generically, as expected from field theory considerations and recent holographic results, the applicability of hydrodynamics is delayed as the field theory coupling decreases.
We find an exact coordinate transformation rule from the $AdS_5$ Schwarzschild black hole in the Poincare and the global patch to the Fefferman-Graham coordinate system. Using these results, we evaluate the corresponding holographic stress tensor and
A general class of holographic theories with a nontrivial $theta$-angle are analyzed. The instanton density operator is dual to a bulk axion field. We calculate the ground-state solutions with nontrivial source, $a_{UV}$, for the axion, for both stee
We advance a novel method for the finite-temperature effective action for nonequilibrium quantum fields and find the QED effective action in time-dependent electric fields, where charged pairs evolve out of equilibrium. The imaginary part of the effe
In this letter we use the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence to establish a set of old conjectures about symmetries in quantum gravity. These are that no global symmetries are possible, that internal gauge symmetries must
In this paper we study the dynamical instability of Sakai-Sugimotos holographic QCD model at finite baryon density. In this model, the baryon density, represented by the smeared instanton on the worldvolume of the probe D8-overline{D8} mesonic brane,