ترغب بنشر مسار تعليمي؟ اضغط هنا

The Non-Linear Growth of the Magnetic Rayleigh-Taylor Instability

162   0   0.0 ( 0 )
 نشر من قبل Jack Carlyle
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This work examines the effect of the embedded magnetic field strength on the non-linear development of the magnetic Rayleigh-Taylor Instability (RTI) (with a field-aligned interface) in an ideal gas close to the incompressible limit in three dimensions. Numerical experiments are conducted in a domain sufficiently large so as to allow the predicted critical modes to develop in a physically realistic manner. The ratio between gravity, which drives the instability in this case (as well as in several of the corresponding observations), and magnetic field strength is taken up to a ratio which accurately reflects that of observed astrophysical plasma, in order to allow comparison between the results of the simulations and the observational data which served as inspiration for this work. This study finds reduced non-linear growth of the rising bubbles of the RTI for stronger magnetic fields, and that this is directly due to the change in magnetic field strength, rather than the indirect effect of altering characteristic length scales with respect to domain size. By examining the growth of the falling spikes, the growth rate appears to be enhanced for the strongest magnetic field strengths, suggesting that rather than affecting the development of the system as a whole, increased magnetic field strengths in fact introduce an asymmetry to the system. Further investigation of this effect also revealed that the greater this asymmetry, the less efficiently the gravitational energy is released. By better understanding the under-studied regime of such a major phenomenon in astrophysics, deeper explanations for observations may be sought, and this work illustrates that the strength of magnetic fields in astrophysical plasmas influences observed RTI in subtle and complex ways.



قيم البحث

اقرأ أيضاً

98 - Shu-Chao Duan 2017
We give theoretical analyses of the Magneto-Rayleigh-Taylor instability driven by a rotating magnetic field. Both slab and liner configurations with finite thicknesses are dealt with in the WKB and the non-WKB approximations. Results show that instab ilities for all modes (combinations of wave vectors) are alleviated. We further discuss the potential application of the alternant/nested configurations of a theta and a Z pinch to the Theta-Z Liner Inertia Fusion (Theta-Z-LIF) concept.
We investigate the development of the magnetic Rayleigh-Taylor instability at the inner edge of an astrophysical disk around a spinning central black hole. We solve the equations of general relativity that govern small amplitude oscillations of a dis continuous interface in a Keplerian disk threaded by an ordered magnetic field, and we derive a stability criterion that depends on the central black hole spin and the accumulated magnetic field. We also compare our results with the results of GR MHD simulations of black hole accretion flows that reach a magnetically arrested state (MAD). We found that the instability growth timescales that correspond to the simulation parameters are comparable to the corresponding timescales for free-fall accretion from the ISCO onto the black hole. We thus propose that the Rayleigh-Taylor instability disrupts the accumulation of magnetic flux onto the black hole horizon as the disk reaches a MAD state.
82 - A. R. Yeates , G. Hornig 2016
By defining an appropriate field line helicity, we apply the powerful concept of magnetic helicity to the problem of global magnetic field evolution in the Suns corona. As an ideal-magnetohydrodynamic invariant, the field line helicity is a meaningfu l measure of how magnetic helicity is distributed within the coronal volume. It may be interpreted, for each magnetic field line, as a magnetic flux linking with that field line. Using magneto-frictional simulations, we investigate how field line helicity evolves in the non-potential corona as a result of shearing by large-scale motions on the solar surface. On open magnetic field lines, the helicity injected by the Sun is largely output to the solar wind, provided that the coronal relaxation is sufficiently fast. But on closed magnetic field lines, helicity is able to build up. We find that the field line helicity is non-uniformly distributed, and is highly concentrated in twisted magnetic flux ropes. Eruption of these flux ropes is shown to lead to sudden bursts of helicity output, in contrast to the steady flux along the open magnetic field lines.
The dynamics of a thin liquid film on the underside of a curved cylindrical substrate is studied. The evolution of the liquid layer is investigated as the film thickness and the radius of curvature of the substrate are varied. A dimensionless paramet er (a modified Bond number) that incorporates both geometric parameters, gravity, and surface tension is identified, and allows the observations to be classified according to three different flow regimes: stable films, films with transient growth of perturbations followed by decay, and unstable films. Experiments and theory confirm that, below a critical value of the Bond number, curvature of the substrate suppresses the Rayleigh-Taylor instability.
We analyze the observations from Solar TErrestrial RElations Observatory (STEREO)-A&B/COR-1 of an eruptive prominence in the intermediate corona on 7 June 2011 at 08:45 UT, which consists of magnetic Rayleigh-Taylor (MRT) unstable plasma segments. It s upper northward segment shows spatio-temporal evolution of MRT instability in form of finger structures upto the outer corona and low inter-planetary space. Using method of Dolei et al.(2014), It is estimated that the density in each bright finger is greater than corresponding dark region lying below of it in the surrounding intermediate corona. The instability is evolved due to wave perturbations that are parallel to the magnetic field at the density interface. We conjecture that the prominence plasma is supported by tension component of the magnetic field against gravity. Using linear stability theory, magnetic field is estimated as 21-40 mG to suppress growth of MRT in the observed finger structures. In the southward plasma segment, a horn-like structure is observed at 11:55 UT in the intermediate corona that also indicates MRT instability. Falling blobs are also observed in both the plasma segments. In the outer corona upto 6-13 solar radii, the mushroom-like plasma structures have been identified in the upper northward MRT unstable plasma segment using STEREO-A/COR-2. These structures most likely grew due to the breaking and twisting of fingers at large spatial scales in weaker magnetic fields. In the lower inter-planetary space upto 20 solar radii, these structures are fragmented into various small-scale localized plasma spikes most likely due to turbulent mixing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا