ﻻ يوجد ملخص باللغة العربية
We report new searches for the solar axions and galactic axion-like dark matter particles, using the first low-background data from PandaX-II experiment at China Jinping Underground Laboratory, corresponding to a total exposure of about $2.7times 10^4$ kg$cdot$day. No solar axion or galactic axion-like dark matter particle candidate has been identified. The upper limit on the axion-electron coupling ($g_{Ae}$) from the solar flux is found to be about $4.35 times 10^{-12}$ in mass range from $10^{-5}$ to 1 keV/$c^2$ with 90% confidence level, similar to the recent LUX result. We also report a new best limit from the $^{57}$Fe de-excitation. On the other hand, the upper limit from the galactic axions is on the order of $10^{-13}$ in the mass range from 1 keV/$c^2$ to 10 keV/$c^2$ with 90% confidence level, slightly improved compared with the LUX.
New constraints are presented on the spin-dependent WIMP-nucleon interaction from the PandaX-II experiment, using a data set corresponding to a total exposure of 3.3$times10^4$ kg-days. Assuming a standard axial-vector spin-dependent WIMP interaction
We report a new search of weakly interacting massive particles (WIMPs) using the combined low background data sets in 2016 and 2017 from the PandaX-II experiment in China. The latest data set contains a new exposure of 77.1 live day, with the backgro
We report the first results of a light weakly interacting massive particles (WIMPs) search from the CDEX-10 experiment with a 10 kg germanium detector array immersed in liquid nitrogen at the China Jinping Underground Laboratory with a physics data s
We report on the first dark-matter (DM) search results from PandaX-I, a low threshold dual-phase xenon experiment operating at the China Jinping Underground Laboratory. In the 37-kg liquid xenon target with 17.4 live-days of exposure, no DM particle
We report here the results of searching for inelastic scattering of dark matter (initial and final state dark matter particles differ by a small mass splitting) with nucleon with the first 79.6-day of PandaX-II data (Run 9). We set the upper limits f