ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced gamma radiation toward the rotation axis from the immediate vicinity of extremely rotating black holes

94   0   0.0 ( 0 )
 نشر من قبل Yoogeun Song
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the acceleration of electrons and positrons by magnetic-field-aligned electric fields in the polar funnel of an accreting black hole (BH). Applying the pulsar outer-gap theory to BH magnetospheres, we find that such a lepton accelerator arises in the immediate vicinity of the event horizon due to frame-dragging, and that their gamma-ray luminosity increases with decreasing accretion rate. Furthermore, we demonstrate that the gamma-ray flux is enhanced along the rotation axis by more than an order of magnitude if the BH spin increases from $a=0.90M$ to $a=0.9999M$. As a result, if a ten-solar-mass, almost-maximally rotating BH is located within 3 kpc, when its accretion rate is between 0.005% and 0.01% of the Eddington rate, its high-energy flare becomes detectable with the Fermi/Large Area Telescope, provided that the flare lasts longer than 1.2 months and that we view the source nearly along the rotation axis. In addition, its very-high-energy flux is marginally detectable with the Cherenkov Telescope Array, provided that the flare lasts longer than a night and that our viewing angle is about 45 degrees with respect to the rotation axis.



قيم البحث

اقرأ أيضاً

Supermassive black holes are believed to be the central power house of active galactic nuclei. Applying the pulsar outer-magnetospheric particle accelerator theory to black-hole magnetospheres, we demonstrate that an electric field is exerted along t he magnetic field lines near the event horizon of a rotating black hole. In this particle accelerator (or a gap), electrons and positrons are created by photon-photon collisions and accelerated in the opposite directions by this electric field, efficiently emitting gamma-rays via curvature and inverse-Compton processes. It is shown that a gap arises around the null charge surface formed by the frame-dragging effect, provided that there is no current injection across the gap boundaries. The gap is dissipating a part of the holes rotational energy, and the resultant gamma-ray luminosity increases with decreasing plasma accretion from the surroundings. Considering an extremely rotating supermassive black hole, we show that such a gap reproduces the significant very-high-energy (VHE) gamma-ray flux observed from the radio galaxy IC 310, provided that the accretion rate becomes much less than the Eddington rate particularly during its flare phase. It is found that the curvature process dominates the inverse-Compton process in the magnetosphere of IC~310, and that the observed power-law-like spectrum in VHE gamma-rays can be explained to some extent by a superposition of the curvature emissions with varying curvature radius. It is predicted that the VHE spectrum extends into higher energies with increasing VHE photon flux.
219 - Kouichi Hirotani 2018
When a black hole accretes plasmas at very low accretion rate, an advection-dominated accretion flow (ADAF) is formed. In an ADAF, relativistic electrons emit soft gamma-rays via Bremsstrahlung. Some MeV photons collide with each other to materialize as electron-positron pairs in the magnetosphere. Such pairs efficiently screen the electric field along the magnetic field lines, when the accretion rate is typically greater than 0.03-0.3% of the Eddington rate. However, when the accretion rate becomes smaller than this value, the number density of the created pairs becomes less than the rotationally induced Goldreich-Julian density. In such a charge-starved magnetosphere, an electric field arises along the magnetic field lines to accelerate charged leptons into ultra-relativistic energies, leading to an efficient TeV emission via an inverse-Compton (C) process, spending a portion of the extracted holes rotational energy. In this review, we summarize the stationary lepton accelerator models in black hole magnetospheres. We apply the model to super-massive black holes and demonstrate that nearby low-luminosity active galactic nuclei are capable of emitting detectable gamma-rays between 0.1 and 30 TeV with the Cherenkov Telescope Array.
Rotating supermassive black holes produce jets and their origin is connected to magnetic field that is generated by accreting matter flow. There is a point of view that electromagnetic fields around rotating black holes are brought to the hole by acc retion. In this situation the prograde accreting disks produce weaker large-scale black hole threading magnetic fields, implying weaker jets that in retrograde regimes. The basic goal of this paper is to find the best candidates for retrograde accreting systems in observed active galactic nuclei. We show that active galactic nuclei with low Eddington ratio are really the best candidates for retrograde systems. This conclusion is obtained for kinetically dominated FRII radio galaxies, flat spectrum radio loud narrow line Seyfert I galaxies and a number of nearby galaxies. Our conclusion is that the best candidates for retrograde systems are the noticeable population of active galactic nuclei in the Universe. This result corresponds to the conclusion that in the merging process the interaction of merging black holes with a retrograde circumbinary disk is considerably more effective for shrinking the binary system.
118 - J. Ridky 2009
The Unruhs thermal state in the vicinity of the event horizon of the black hole provides conditions where impinging particles can radiate other particles. The subsequent decays may eventually lead to observable radiation of photons and neutrinos indu ced even by massive particles with gravitational interaction only. The hadronic particles will induce $sim 30$ MeV gamma radiation from $pi^{0}$ decays.
The on-going H.E.S.S. Galactic Plane Survey continues to reveal new sources of VHE gamma-rays. In particular, recent re-observations of the region around the shell-type supernova remnant (SNR) G318.2+0.1 have resulted in the discovery of statisticall y-significant very-high-energy (VHE) gamma-ray emission from an extended region. Although the source remains unidentified, archival observations of CO12 in the region provide an opportunity to investigate a potential SNR/molecular cloud interaction. The morphological properties of this newly-discovered VHE gamma-ray source HESSJ1457-593 are presented and discussed in light of the multi-wavelength data available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا