ﻻ يوجد ملخص باللغة العربية
We present ELDAR, a new method that exploits the potential of medium- and narrow-band filter surveys to securely identify active galactic nuclei (AGN) and determine their redshifts. Our methodology improves on traditional approaches by looking for AGN emission lines expected to be identified against the continuum, thanks to the width of the filters. To assess its performance, we apply ELDAR to the data of the ALHAMBRA survey, which covered an effective area of $2.38,{rm deg}^2$ with 20 contiguous medium-band optical filters down to F814W$simeq 24.5$. Using two different configurations of ELDAR in which we require the detection of at least 2 and 3 emission lines, respectively, we extract two catalogues of type-I AGN. The first is composed of 585 sources ($79,%$ of them spectroscopically-unknown) down to F814W$=22.5$ at $z_{rm phot}>1$, which corresponds to a surface density of $209,{rm deg}^{-2}$. In the second, the 494 selected sources ($83,%$ of them spectroscopically-unknown) reach F814W$=23$ at $z_{rm phot}>1.5$, for a corresponding number density of $176,{rm deg}^{-2}$. Then, using samples of spectroscopically-known AGN in the ALHAMBRA fields, for the two catalogues we estimate a completeness of $73,%$ and $67,%$, and a redshift precision of $1.01,%$ and $0.86,%$ (with outliers fractions of $8.1,%$ and $5.8,%$). At $z>2$, where our selection performs best, we reach $85,%$ and $77,%$ completeness and we find no contamination from galaxies.
We present MUFFIT, a new generic code optimized to retrieve the main stellar population parameters of galaxies in photometric multi-filter surveys, and we check its reliability and feasibility with real galaxy data from the ALHAMBRA survey. Making us
Stars form through the gravitational collapse of molecular cloud cores. Before collapsing, the cores are supported by thermal pressure and turbulent motions. A question of critical importance for the understanding of star formation is how to observat
Various observational techniques have been used to survey galaxies and AGN, from X-rays to radio frequencies, both photometric and spectroscopic. I will review these techniques aimed at the study of galaxy evolution and of the role of AGNs and star f
Recent models of super-massive black hole (SMBH) and host galaxy joint evolution predict the presence of a key phase where accretion, traced by obscured Active Galactic Nuclei (AGN) emission, is coupled with powerful star formation. Then feedback pro
We aim to study the effect of environment on the presence and fuelling of Active Galactic Nuclei (AGN) in massive galaxy clusters. We explore the use of different AGN detection techniques with the goal of selecting AGN across a broad range of luminos