ترغب بنشر مسار تعليمي؟ اضغط هنا

How To Model Supernovae in Simulations of Star and Galaxy Formation

99   0   0.0 ( 0 )
 نشر من قبل Philip Hopkins
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Philip F. Hopkins




اسأل ChatGPT حول البحث

We study the implementation of mechanical feedback from supernovae (SNe) and stellar mass loss in galaxy simulations, within the Feedback In Realistic Environments (FIRE) project. We present the FIRE-2 algorithm for coupling mechanical feedback, which can be applied to any hydrodynamics method (e.g. fixed-grid, moving-mesh, and mesh-less methods), and black hole as well as stellar feedback. This algorithm ensures manifest conservation of mass, energy, and momentum, and avoids imprinting preferred directions on the ejecta. We show that it is critical to incorporate both momentum and thermal energy of mechanical ejecta in a self-consistent manner, accounting for SNe cooling radii when they are not resolved. Using idealized simulations of single SN explosions, we show that the FIRE-2 algorithm, independent of resolution, reproduces converged solutions in both energy and momentum. In contrast, common fully-thermal (energy-dump) or fully-kinetic (particle-kicking) schemes in the literature depend strongly on resolution: when applied at mass resolution >100 solar masses, they diverge by orders-of-magnitude from the converged solution. In galaxy-formation simulations, this divergence leads to orders-of-magnitude differences in galaxy properties, unless those models are adjusted in a resolution-dependent way. We show that all models that individually time-resolve SNe converge to the FIRE-2 solution at sufficiently high resolution. However, in both idealized single-SN simulations and cosmological galaxy-formation simulations, the FIRE-2 algorithm converges much faster than other sub-grid models without re-tuning parameters.

قيم البحث

اقرأ أيضاً

We present analytical reconstructions of type Ia supernova (SN Ia) delay time distributions (DTDs) by way of two independent methods: by a Markov chain Monte Carlo best-fit technique comparing the volumetric SN Ia rate history to todays compendium co smic star-formation history, and secondly through a maximum likelihood analysis of the star formation rate histories of individual galaxies in the GOODS/CANDELS field, in comparison to their resultant SN Ia yields. We adopt a flexible skew-normal DTD model, which could match a wide range of physically motivated DTD forms. We find a family of solutions that are essentially exponential DTDs, similar in shape to the $betaapprox-1$ power-law DTDs, but with more delayed events (>1 Gyr in age) than prompt events (<1 Gyr). Comparing these solutions to delay time measures separately derived from field galaxies and galaxy clusters, we find the skew-normal solutions can accommodate both without requiring a different DTD form in different environments. These model fits are generally inconsistent with results from single-degenerate binary population synthesis models, and are seemingly supportive of double-degenerate progenitors for most SN Ia events.
108 - Yu Qiu 2020
Galaxy clusters are the most massive collapsed structures in the universe whose potential wells are filled with hot, X-ray emitting intracluster medium. Observations however show that a significant number of clusters (the so-called cool-core clusters ) also contain large amounts of cold gas in their centres, some of which is in the form of spatially extended filaments spanning scales of tens of kiloparsecs. These findings have raised questions about the origin of the cold gas, as well as its relationship with the central active galactic nucleus (AGN), whose feedback has been established as a ubiquitous feature in such galaxy clusters. Here we report a radiation hydrodynamic simulation of AGN feedback in a galaxy cluster, in which cold filaments form from the warm, AGN-driven outflows with temperatures between $10^4$ and $10^7$ K as they rise in the cluster core. Our analysis reveals a new mechanism, which, through the combination of radiative cooling and ram pressure, naturally promotes outflows whose cooling time is shorter than their rising time, giving birth to spatially extended cold gas filaments. Our results strongly suggest that the formation of cold gas and AGN feedback in galaxy clusters are inextricably linked and shed light on how AGN feedback couples to the intracluster medium.
Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts $(zgtrsim 2)$, probe potential SN Ia evolution, and deliver high-precision constraints on $H_0$, $w$, and $Omega_ m$ via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear to be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. AGN, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse supernovae will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that LSST can discover up to 500 multiply imaged SNe Ia using this technique in a 10-year $z$-band search, more than an order of magnitude improvement over previous estimates (Oguri & Marshall 2010). We also predict that ZTF should find up to 10 multiply imaged SNe Ia using this technique in a 3-year $R$-band search---despite the fact that this survey will not resolve a single system.
366 - Ke-Jung Chen 2016
Metals from Population III (Pop III) supernovae led to the formation of less massive Pop II stars in the early universe, altering the course of evolution of primeval galaxies and cosmological reionization. There are a variety of scenarios in which he avy elements from the first supernovae were taken up into second-generation stars, but cosmological simulations only model them on the largest scales. We present small-scale, high-resolution simulations of the chemical enrichment of a primordial halo by a nearby supernova after partial evaporation by the progenitor star. We find that ejecta from the explosion crash into and mix violently with ablative flows driven off the halo by the star, creating dense, enriched clumps capable of collapsing into Pop II stars. Metals may mix less efficiently with the partially exposed core of the halo, so it might form either Pop III or Pop II stars. Both Pop II and III stars may thus form after the collision if the ejecta do not strip all the gas from the halo. The partial evaporation of the halo prior to the explosion is crucial to its later enrichment by the supernova.
Cosmological simulations of galaxies have typically produced too many stars at early times. We study the global and morphological effects of radiation pressure (RP) in eight pairs of high-resolution cosmological galaxy formation simulations. We find that the additional feedback suppresses star formation globally by a factor of ~2. Despite this reduction, the simulations still overproduce stars by a factor of ~2 with respect to the predictions provided by abundance matching methods for halos more massive than 5E11 Msun/h (Behroozi, Wechsler & Conroy 2013). We also study the morphological impact of radiation pressure on our simulations. In simulations with RP the average number of low mass clumps falls dramatically. Only clumps with stellar masses Mclump/Mdisk <= 5% are impacted by the inclusion of RP, and RP and no-RP clump counts above this range are comparable. The inclusion of RP depresses the contrast ratios of clumps by factors of a few for clump masses less than 5% of the disk masses. For more massive clumps, the differences between and RP and no-RP simulations diminish. We note however, that the simulations analyzed have disk stellar masses below about 2E10 Msun/h. By creating mock Hubble Space Telescope observations we find that the number of clumps is slightly reduced in simulations with RP. However, since massive clumps survive the inclusion of RP and are found in our mock observations, we do not find a disagreement between simulations of our clumpy galaxies and observations of clumpy galaxies. We demonstrate that clumps found in any single gas, stellar, or mock observation image are not necessarily clumps found in another map, and that there are few clumps common to multiple maps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا