ﻻ يوجد ملخص باللغة العربية
The success of black phosphorus in fast electronic and photonic devices is hindered by its rapid degradation in presence of oxygen. Orthorhombic tin selenide is a representative of group IV-VI binary compounds that are robust, isoelectronic, and share the same structure with black phosphorus. We measured the band structure of SnSe and found highly anisotropic valence bands that form several valleys having fast dispersion within the layers and negligible dispersion across. This is exactly the band structure desired for efficient thermoelectric generation where SnSe has shown a great promise.
IV-VI semiconductor SnSe has been known as the material with record high thermoelectric performance.The multiple close-to-degenerate valence bands in the electronic band structure has been one of the key factors contributing to the high power factor
We systematically investigated the geometric, electronic and thermoelectric (TE) properties of bulk black phosphorus (BP) under strain. The hinge-like structure of BP brings unusual mechanical responses such as anisotropic Youngs modulus and negative
Synchrotron-based angle-resolved photoemission spectroscopy is used to determine the electronic structure of layered SnSe, which was recently turned out to be a potential thermoelectric material. We observe that the top of the valence band consists o
Two-dimensional layered semiconductor black phosphorus (BP), a promising pressure induced Dirac system as predicted by band structure calculations, has been studied by $^{31}$P-nuclear magnetic resonance. Band calculations have been also carried out
We present results of electronic band structure, Fermi surface and electron transport properties calculations in orthorhombic $n$- and $p$-type SnSe, applying Korringa-Kohn-Rostoker method and Boltzmann transport approach. The analysis accounted for