ترغب بنشر مسار تعليمي؟ اضغط هنا

A Digital Correlator Upgrade for the Arcminute MicroKelvin Imager

112   0   0.0 ( 0 )
 نشر من قبل Jack Hickish
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Arcminute Microkelvin Imager (AMI) telescopes located at the Mullard Radio Astronomy Observatory near Cambridge have been significantly enhanced by the implementation of a new digital correlator with 1.2 MHz spectral resolution. This system has replaced a 750-MHz resolution analogue lag-based correlator, and was designed to mitigate the effects of radio frequency interference, particularly from geostationary satellites that contaminate observations at low declinations. The upgraded instrument consists of 18 ROACH2 Field Programmable Gate Array platforms used to implement a pair of real-time FX correlators -- one for each of AMIs two arrays. The new system separates the down-converted RF baseband signal from each AMI receiver into two 2.3 GHz-wide sub-bands which are each digitized at 5-Gsps with 8 bits of precision. These digital data streams are filtered into 2048 frequency channels and cross-correlated using FPGA hardware, with a commercial 10 Gb Ethernet switch providing high-speed data interconnect. Images formed using data from the new digital correlator show over an order of magnitude improvement in dynamic range over the previous system. The ability to observe at low declinations has also been significantly improved.



قيم البحث

اقرأ أيضاً

The Arcminute Microkelvin Imager is a pair of interferometer arrays operating with six frequency channels spanning 13.9-18.2 GHz, with very high sensitivity to angular scales 30-10. The telescope is aimed principally at Sunyaev-Zeldovich imaging of c lusters of galaxies. We discuss the design of the telescope and describe and explain its electronic and mechanical systems.
We present the Arcminute Microkelvin Imager (AMI) Large Array catalogue of 139 gamma-ray bursts (GRBs). AMI observes at a central frequency of 15.7 GHz and is equipped with a fully automated rapid-response mode, which enables the telescope to respond to high-energy transients detected by Swift. On receiving a transient alert, AMI can be on-target within two minutes, scheduling later start times if the source is below the horizon. Further AMI observations are manually scheduled for several days following the trigger. The AMI GRB programme probes the early-time (< 1 day) radio properties of GRBs, and has obtained some of the earliest radio detections (GRB 130427A at 0.36 and GRB 130907A at 0.51 days post-burst). As all Swift GRBs visible to AMI are observed, this catalogue provides the first representative sample of GRB radio properties, unbiased by multi-wavelength selection criteria. We report the detection of six GRB radio afterglows that were not previously detected by other radio telescopes, increasing the rate of radio detections by 50% over an 18-month period. The AMI catalogue implies a Swift GRB radio detection rate of >15%, down to ~0.2 mJy/beam. However, scaling this by the fraction of GRBs AMI would have detected in the Chandra & Frail sample (all radio-observed GRBs between 1997 - 2011), it is possible ~44 - 56% of Swift GRBs are radio-bright, down to ~0.1 - 0.15 mJy/beam. This increase from the Chandra & Frail rate (~30%) is likely due to the AMI rapid-response mode, which allows observations to begin while the reverse-shock is contributing to the radio afterglow.
145 - G. E. Anderson 2014
We present one of the best sampled early time light curves of a gamma-ray burst (GRB) at radio wavelengths. Using the Arcminute Mircrokelvin Imager (AMI) we observed GRB 130427A at the central frequency of 15.7 GHz between 0.36 and 59.32 days post-bu rst. These results yield one of the earliest radio detections of a GRB and demonstrate a clear rise in flux less than one day after the gamma-ray trigger followed by a rapid decline. This early time radio emission probably originates in the GRB reverse shock so our AMI light curve reveals the first ever confirmed detection of a reverse shock peak in the radio domain. At later times (about 3.2 days post-burst) the rate of decline decreases, indicating that the forward shock component has begun to dominate the light-curve. Comparisons of the AMI light curve with modelling conducted by Perley et al. show that the most likely explanation of the early time 15.7 GHz peak is caused by the self-absorption turn-over frequency, rather than the peak frequency, of the reverse shock moving through the observing bands.
We report the first detection of a Sunyaev-Zeldovich (S-Z) decrement with the Arcminute Microkelvin Imager (AMI). We have made commissioning observations towards the cluster A1914 and have measured an integrated flux density of -8.61 mJy in a uv-tape red map with noise level 0.19 mJy/beam. We find that the spectrum of the decrement, measured in the six channels between 13.5-18GHz, is consistent with that expected for a S-Z effect. The sensitivity of the telescope is consistent with the figures used in our simulations of cluster surveys with AMI.
We present 16-GHz observations using the Arcminute Microkelvin Imager (AMI) of 11 clusters with 7 x 10^{37}W < L_X < 11 x 10^{37}W (h_{50}=1.0) selected from the Local Cluster Substructure Survey (LoCuSS) and compare them to X-ray data. We use a fast , Bayesian cluster analysis to explore the high-dimensional parameter space of the cluster-plus-sources model and obtain robust cluster parameter estimates in the presence of radio point sources, receiver noise and primordial CMB anisotropy. Our analysis fits a spherical, isothermal beta-model to our data and assumes the cluster follows the theoretical mass-temperature relation. Large-scale cluster parameters internal to r_{500} are derived under the assumption of hydrostatic equilibrium. Posterior distributions for the large-scale parameters of 8 of our clusters are given; SZ effects towards Abell 1704 and Zw0857.9+2107 were not detected and our spherical beta-profile was found to be an inadequate fit to the decrement on our map for Abell 2409.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا