ﻻ يوجد ملخص باللغة العربية
The Arcminute Microkelvin Imager (AMI) telescopes located at the Mullard Radio Astronomy Observatory near Cambridge have been significantly enhanced by the implementation of a new digital correlator with 1.2 MHz spectral resolution. This system has replaced a 750-MHz resolution analogue lag-based correlator, and was designed to mitigate the effects of radio frequency interference, particularly from geostationary satellites that contaminate observations at low declinations. The upgraded instrument consists of 18 ROACH2 Field Programmable Gate Array platforms used to implement a pair of real-time FX correlators -- one for each of AMIs two arrays. The new system separates the down-converted RF baseband signal from each AMI receiver into two 2.3 GHz-wide sub-bands which are each digitized at 5-Gsps with 8 bits of precision. These digital data streams are filtered into 2048 frequency channels and cross-correlated using FPGA hardware, with a commercial 10 Gb Ethernet switch providing high-speed data interconnect. Images formed using data from the new digital correlator show over an order of magnitude improvement in dynamic range over the previous system. The ability to observe at low declinations has also been significantly improved.
The Arcminute Microkelvin Imager is a pair of interferometer arrays operating with six frequency channels spanning 13.9-18.2 GHz, with very high sensitivity to angular scales 30-10. The telescope is aimed principally at Sunyaev-Zeldovich imaging of c
We present the Arcminute Microkelvin Imager (AMI) Large Array catalogue of 139 gamma-ray bursts (GRBs). AMI observes at a central frequency of 15.7 GHz and is equipped with a fully automated rapid-response mode, which enables the telescope to respond
We present one of the best sampled early time light curves of a gamma-ray burst (GRB) at radio wavelengths. Using the Arcminute Mircrokelvin Imager (AMI) we observed GRB 130427A at the central frequency of 15.7 GHz between 0.36 and 59.32 days post-bu
We report the first detection of a Sunyaev-Zeldovich (S-Z) decrement with the Arcminute Microkelvin Imager (AMI). We have made commissioning observations towards the cluster A1914 and have measured an integrated flux density of -8.61 mJy in a uv-tape
We present 16-GHz observations using the Arcminute Microkelvin Imager (AMI) of 11 clusters with 7 x 10^{37}W < L_X < 11 x 10^{37}W (h_{50}=1.0) selected from the Local Cluster Substructure Survey (LoCuSS) and compare them to X-ray data. We use a fast