ترغب بنشر مسار تعليمي؟ اضغط هنا

The size distribution of Near Earth Objects larger than 10 meters

65   0   0.0 ( 0 )
 نشر من قبل David E. Trilling
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyzed data from the first year of a survey for Near Earth Objects (NEOs) that we are carrying out with the Dark Energy Camera (DECam) on the 4-meter Blanco telescope at the Cerro Tololo Inter-American Observatory. We implanted synthetic NEOs into the data stream to derive our nightly detection efficiency as a function of magnitude and rate of motion. Using these measured efficiencies and the Solar System absolute magnitudes derived by the Minor Planet Center for the 1377 measurements of 235 unique NEOs detected, we directly derive, for the first time from a single observational data set, the NEO size distribution from 1 km down to 10 meters. We find that there are 10^6.6 NEOs larger than 10 meters. This result implies a factor of ten fewer small NEOs than some previous results, though our derived size distribution is in good agreement with several other estimates.



قيم البحث

اقرأ أيضاً

In the absence of dense photometry for a large population of Near Earth Objects (NEOs), the best method of obtaining a shape distribution comes from sparse photometry and partial lightcurves. We have used 867 partial lightcurves obtained by Spitzer t o determine a shape distribution for sub-kilometre NEOs. From this data we find a best fit average elongation $frac{b}{a}=0.72 pm 0.08$. We compare this result with a shape distribution obtained from 1869 NEOs in the same size range observed by Pan-STARRS 1 and find the Spitzer-obtained elongation to be in excellent agreement with this PS1 value of $frac{b}{a}=0.70 pm 0.10$. These values are also in agreement with literature values for $1<D<10$ km objects in the main asteroid belt, however, there is a size discrepancy between the two datasets. Using a smaller sample of NEOs in the size range $1<D<5$ km from PS1 data, we obtain an average axis ratio $b/a = 0.70 pm 0.12$. This is more elongated than the shape distribution for main belt objects in the same size regime, although the current uncertainties are sizeable and this should be verified using a larger data set. As future large surveys come online it will be possible to observe smaller main belt asteroids to allow for better comparisons of different sub-kilometre populations.
Thermal infrared observations are the most effective way to measure asteroid diameter and albedo for a large number of near-Earth objects. Major surveys like NEOWISE, NEOSurvey, ExploreNEOs, and NEOLegacy find a small fraction of high albedo objects that do not have clear analogs in the current meteorite population. About 8% of Spitzer-observed near-Earth objects have nominal albedo solutions greater than 0.5. This may be a result of lightcurve variability leading to an incorrect estimate of diameter or inaccurate absolute visual magnitudes. For a sample of 23 high albedo NEOs we do not find that their shapes are significantly different from the McNeill et al. (2019) near-Earth object shape distribution. We performed a Monte Carlo analysis on 1505 near-Earth objects observed by Spitzer, sampling the visible and thermal fluxes of all targets to determine the likelihood of obtaining a high albedo erroneously. Implementing the McNeill shape distribution for near-Earth objects, we provide an upper-limit on the geometric albedo of 0.5+/-0.1 for the near-Earth population.
The near-Earth object (NEO) population is a window into the original conditions of the protosolar nebula, and has the potential to provide a key pathway for the delivery of water and organics to the early Earth. In addition to delivering the crucial ingredients for life, NEOs can pose a serious hazard to humanity since they can impact the Earth. To properly quantify the impact risk, physical properties of the NEO population need to be studied. Unfortunately, NEOs have a great variation in terms of mitigation-relevant quantities (size, albedo, composition, etc.) and less than 15% of them have been characterized to date. There is an urgent need to undertake a comprehensive characterization of smaller NEOs (D<300m) given that there are many more of them than larger objects. One of the main aims of the NEOShield-2 project (2015--2017), financed by the European Community in the framework of the Horizon 2020 program, is therefore to retrieve physical properties of a wide number of NEOs in order to design impact mitigation missions and assess the consequences of an impact on Earth. We carried out visible photometry of NEOs, making use of the DOLORES instrument at the Telescopio Nazionale Galileo (TNG, La Palma, Spain) in order to derive visible color indexes and the taxonomic classification for each target in our sample. We attributed for the first time the taxonomical complex of 67 objects obtained during the first year of the project. While the majority of our sample belong to the S-complex, carbonaceous C-complex NEOs deserve particular attention. These NEOs can be located in orbits that are challenging from a mitigation point of view, with high inclination and low minimum orbit intersection distance (MOID). In addition, the lack of carbonaceous material we see in the small NEO population might not be due to an observational bias alone.
The cryogenic WISE mission in 2010 was extremely sensitive to asteroids and not biased against detecting dark objects. The albedos of 428 Near Earth Asteroids (NEAs) observed by WISE during its fully cryogenic mission can be fit quite well by a 3 par ameter function that is the sum of two Rayleigh distributions. The Rayleigh distribution is zero for negative values, and follows $f(x) = x exp[-x^2/(2sigma^2)]/sigma^2$ for positive x. The peak value is at x=sigma, so the position and width are tied together. The three parameters are the fraction of the objects in the dark population, the position of the dark peak, and the position of the brighter peak. We find that 25.3% of the NEAs observed by WISE are in a very dark population peaking at $p_V = 0.03$, while the other 74.7% of the NEAs seen by WISE are in a moderately dark population peaking at $p_V = 0.168$. A consequence of this bimodal distribution is that the Congressional mandate to find 90% of all NEAs larger than 140 m diameter cannot be satisfied by surveying to H=22 mag, since a 140 m diameter asteroid at the very dark peak has H=23.7 mag, and more than 10% of NEAs are darker than p_V = 0.03.
269 - A. Mainzer , T. Grav , J. Bauer 2011
With the NEOWISE portion of the emph{Wide-field Infrared Survey Explorer} (WISE) project, we have carried out a highly uniform survey of the near-Earth object (NEO) population at thermal infrared wavelengths ranging from 3 to 22 $mu$m, allowing us to refine estimates of their numbers, sizes, and albedos. The NEOWISE survey detected NEOs the same way whether they were previously known or not, subject to the availability of ground-based follow-up observations, resulting in the discovery of more than 130 new NEOs. The surveys uniformity in sensitivity, observing cadence, and image quality have permitted extrapolation of the 428 near-Earth asteroids (NEAs) detected by NEOWISE during the fully cryogenic portion of the WISE mission to the larger population. We find that there are 981$pm$19 NEAs larger than 1 km and 20,500$pm$3000 NEAs larger than 100 m. We show that the Spaceguard goal of detecting 90% of all 1 km NEAs has been met, and that the cumulative size distribution is best represented by a broken power law with a slope of 1.32$pm$0.14 below 1.5 km. This power law slope produces $sim13,200pm$1,900 NEAs with $D>$140 m. Although previous studies predict another break in the cumulative size distribution below $Dsim$50-100 m, resulting in an increase in the number of NEOs in this size range and smaller, we did not detect enough objects to comment on this increase. The overall number for the NEA population between 100-1000 m are lower than previous estimates. The numbers of near-Earth comets will be the subject of future work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا