ﻻ يوجد ملخص باللغة العربية
We analyzed data from the first year of a survey for Near Earth Objects (NEOs) that we are carrying out with the Dark Energy Camera (DECam) on the 4-meter Blanco telescope at the Cerro Tololo Inter-American Observatory. We implanted synthetic NEOs into the data stream to derive our nightly detection efficiency as a function of magnitude and rate of motion. Using these measured efficiencies and the Solar System absolute magnitudes derived by the Minor Planet Center for the 1377 measurements of 235 unique NEOs detected, we directly derive, for the first time from a single observational data set, the NEO size distribution from 1 km down to 10 meters. We find that there are 10^6.6 NEOs larger than 10 meters. This result implies a factor of ten fewer small NEOs than some previous results, though our derived size distribution is in good agreement with several other estimates.
In the absence of dense photometry for a large population of Near Earth Objects (NEOs), the best method of obtaining a shape distribution comes from sparse photometry and partial lightcurves. We have used 867 partial lightcurves obtained by Spitzer t
Thermal infrared observations are the most effective way to measure asteroid diameter and albedo for a large number of near-Earth objects. Major surveys like NEOWISE, NEOSurvey, ExploreNEOs, and NEOLegacy find a small fraction of high albedo objects
The near-Earth object (NEO) population is a window into the original conditions of the protosolar nebula, and has the potential to provide a key pathway for the delivery of water and organics to the early Earth. In addition to delivering the crucial
The cryogenic WISE mission in 2010 was extremely sensitive to asteroids and not biased against detecting dark objects. The albedos of 428 Near Earth Asteroids (NEAs) observed by WISE during its fully cryogenic mission can be fit quite well by a 3 par
With the NEOWISE portion of the emph{Wide-field Infrared Survey Explorer} (WISE) project, we have carried out a highly uniform survey of the near-Earth object (NEO) population at thermal infrared wavelengths ranging from 3 to 22 $mu$m, allowing us to