ترغب بنشر مسار تعليمي؟ اضغط هنا

Leptonic Flavor Structure in the Brane Shifted Extra Dimensional Seesaw Mechanism

266   0   0.0 ( 0 )
 نشر من قبل Mathias Becker
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the leptonic flavor structure generated by a brane shifted extra dimensional seesaw model with a single right handed neutrino in the bulk. In contrast to previous works, no unitarity approximation for the $3 times 3$ submatrix has been employed. This allows to study phenomenological signatures such as lepton flavor violating decays. A strong prediction of the model, assuming CP conservation, are the ratios of flavor violating charged lepton decay and Z decay branching ratios which are correlated with the neutrino mixing angles and the neutrino mass hierarchy. Furthermore, it is possible to obtain branching ratios for $mu rightarrow e gamma$ close to the experimental bounds even with Yukawa couplings of order one.


قيم البحث

اقرأ أيضاً

109 - Bingrong Yu , Shun Zhou 2021
In this paper, we examine the leptonic flavor invariants in the minimal seesaw model (MSM), in which only two right-handed neutrino singlets are added into the Standard Model in order to accommodate tiny neutrino masses and explain cosmological matte r-antimatter asymmetry via leptogenesis mechanism. For the first time, we calculate the Hilbert series (HS) for the leptonic flavor invariants in the MSM. With the HS we demonstrate that there are totally 38 basic flavor invariants, among which 18 invariants are CP-odd and the others are CP-even. Moreover, we explicitly construct these basic invariants, and any other flavor invariants in the MSM can be decomposed into the polynomials of them. Interestingly, we find that any flavor invariants in the effective theory at the low-energy scale can be expressed as rational functions of those in the full MSM at the high-energy scale. Practical applications to the phenomenological studies of the MSM, such as the sufficient and necessary conditions for CP conservation and CP asymmetries in leptogenesis, are also briefly discussed.
$SO(11)$ gauge-Higgs grand unification is formulated in the six-dimensional hybrid warped space in which the fifth and sixth dimensions play as the electroweak and grand-unification dimensions. Fermions are introduced in ${bf 32}$, ${bf 11}$ and ${bf 1}$ of $SO(11)$. Small neutrino masses naturally emerge as a result of a new seesaw mechanism in the gauge-Higgs unification which is characterized by a $3 times 3$ mass matrix.
We consider the dynamics of a 3-brane embedded in an extra-dimensional Tolman-Bondi Universe where the origin of space plays a special role. The embedding is chosen such that the induced matter distribution on the brane respects the spherical symmetr y of matter in the extra dimensional space. The mirage cosmology on the probe brane is studied, resulting in an inhomogeneous and anisotropic four dimensional cosmology where the origin of space is also special. We then focus on the spatial geometry around the origin and show that the induced geometry, which is initially inhomogeneous and anisotropic, converges to an isotropic and homogeneous Friedmann-Lemaitre 4d space-time. For instance, when a 3-brane is embedded in a 5d matter dominated model, the 4d dynamics around the origin converge to a Friedmann-Lemaitre Universe in a radiation dominated epoch. We analyse this isotropisation process and show that it is a late time attractor.
In this paper, we explore a new avenue to a natural explanation of the observed tiny neutrino masses with a dynamical realization of the three-generation structure in the neutrino sector. Under the magnetized background based on $T^2/Z_2$, matter con sists of multiply-degenerated zero modes and the whole intergenerational structure is dynamically determined. In this sense, we can conclude that our scenario is favored by minimality, where no degree of freedom remains to deform the intergenerational structure by hand freely. Under the consideration of brane-localized Majorana-type mass terms for an $SU(2)_L$ singlet neutrino, it is sufficient to introduce one Higgs doublet for reproducing the observed neutrino data. In all reasonable flux configurations with three right-handed neutrinos, phenomenologically acceptable parameter configurations are found.
We propose a viable model based on the $SU(3)_Ctimes SU(3)_Ltimes U(1)_X$ gauge group, augmented by the $U(1)_{L_g}$ global lepton number symmetry and the $Delta(27) times Z_3times Z_{16}$ discrete group, capable of explaining the Standard Model (SM) fermion masses and mixings, and having a low scale seesaw mechanism which can be tested at the LHC. In addition the model provides an explanation for the SM fermion masses and mixings. In the proposed model, small masses for the light active neutrinos are generated by an inverse seesaw mechanism caused by non renormalizable Yukawa operators and mediated by three very light Majorana neutrinos and the observed hierarchy of the SM fermion masses and mixing angles is produced by the spontaneous breaking of the $Delta(27) times Z_{3}times Z_{16}$ symmetry at very large energy scale. This neutrino mass generation mechanism is not presented in our previous 3-3-1 models with $Delta(27)$ group (Nucl.Phys. B913 (2016) 792-814 and Eur.Phys.J. C76 (2016) no.5, 242), where the masses of the light active neutrinos arise from a combination of type I and type II seesaw mechanisms (Nucl.Phys. B913 (2016) 792-814) as well as from a double seesaw mechanism (Eur.Phys.J. C76 (2016) no.5, 242). Thus, this work corresponds to the first implementation of the $Delta(27)$ symmetry in a 3-3-1 model with low scale seesaw mechanism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا