ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent states for compact Lie groups and their large-N limits

61   0   0.0 ( 0 )
 نشر من قبل Brian C. Hall
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Brian C. Hall




اسأل ChatGPT حول البحث

The first two parts of this article surveys results related to the heat-kernel coherent states for a compact Lie group K. I begin by reviewing the definition of the coherent states, their resolution of the identity, and the associated Segal-Bargmann transform. I then describe related results including connections to geometric quantization and (1+1)-dimensional Yang--Mills theory, the associated coherent states on spheres, and applications to quantum gravity. The third part of this article summarizes recent work of mine with Driver and Kemp on the large-N limit of the Segal--Bargmann transform for the unitary group U(N). A key result is the identification of the leading-order large-N behavior of the Laplacian on trace polynomials.



قيم البحث

اقرأ أيضاً

251 - Jiri Hrivnak , Jiri Patera 2009
Three types of numerical data are provided for simple Lie groups of any type and rank. This data is indispensable for Fourier-like expansions of multidimensional digital data into finite series of $C-$ or $S-$functions on the fundamental domain $F$ o f the underlying Lie group $G$. Firstly, we consider the number $|F_M|$ of points in $F$ from the lattice $P^{vee}_M$, which is the refinement of the dual weight lattice $P^{vee}$ of $G$ by a positive integer $M$. Secondly, we find the lowest set $Lambda_M$ of dominant weights, specifying the maximal set of $C-$ and $S-$functions that are pairwise orthogonal on the point set $F_M$. Finally, we describe an efficient algorithm for finding, on the maximal torus of $G$, the number of conjugate points to every point of $F_M$. Discrete $C-$ and $S-$transforms, together with their continuous interpolations, are presented in full generality.
168 - Jiaqi Huang 2020
Symmetry lies at the heart of todays theoretical study of particle physics. Our manuscript is a tutorial introducing foundational mathematics for understanding physical symmetries. We start from basic group theory and representation theory. We then i ntroduce Lie Groups and Lie Algebra and their properties. We next discuss with detail two important Lie Groups in physics Special Unitary and Lorentz Group, with an emphasis on their applications to particle physics. Finally, we introduce field theory and its version of the Noether Theorem. We believe that the materials cover here will prepare undergraduates for future studies in mathematical physics.
The discrete orthogonality of special function families, called $C$- and $S$-functions, which are derived from the characters of compact simple Lie groups, is described in Hrivnak and Patera (2009 J. Phys. A: Math. Theor. 42 385208). Here, the result s of Hrivnak and Patera are extended to two additional recently discovered families of special functions, called $S^s-$ and $S^l-$functions. The main result is an explicit description of their pairwise discrete orthogonality within each family, when the functions are sampled on finite fragments $F^s_M$ and $F^l_M$ of a lattice in any dimension $ngeq2$ and of any density controlled by $M$, and of the symmetry of the weight lattice of any compact simple Lie group with two different lengths of roots.
98 - Shuai Hou , Yunhe Sheng 2021
In this paper, first we introduce the notion of a Reynolds operator on an $n$-Lie algebra and illustrate the relationship between Reynolds operators and derivations on an $n$-Lie algebra. We give the cohomology theory of Reynolds operators on an $n$- Lie algebra and study infinitesimal deformations of Reynolds operators using the second cohomology group. Then we introduce the notion of NS-$n$-Lie algebras, which are generalizations of both $n$-Lie algebras and $n$-pre-Lie algebras. We show that an NS-$n$-Lie algebra gives rise to an $n$-Lie algebra together with a representation on itself. Reynolds operators and Nijenhuis operators on an $n$-Lie algebra naturally induce NS-$n$-Lie algebra structures. Finally, we construct Reynolds $(n+1)$-Lie algebras and Reynolds $3$-Lie algebras from Reynolds $n$-Lie algebras and Reynolds commutative associative algebras respectively.
Ten types of discrete Fourier transforms of Weyl orbit functions are developed. Generalizing one-dimensional cosine, sine and exponential, each type of the Weyl orbit function represents an exponential symmetrized with respect to a subgroup of the We yl group. Fundamental domains of even affine and dual even affine Weyl groups, governing the argument and label symmetries of the even orbit functions, are determined. The discrete orthogonality relations are formulated on finite sets of points from the refinements of the dual weight lattices. Explicit counting formulas for the number of points of the discrete transforms are deduced. Real-valued Hartley orbit functions are introduced and all ten types of the corresponding discrete Hartley transforms are detailed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا