ترغب بنشر مسار تعليمي؟ اضغط هنا

Observational properties of massive black hole binary progenitors

68   0   0.0 ( 0 )
 نشر من قبل Rainer Hainich
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The first directly detected gravitational waves (GW 150914) were emitted by two coalescing black holes (BHs) with masses of ~36Msun and ~29Msun. Several scenarios have been proposed to put this detection into an astrophysical context. The evolution of an isolated massive binary system is among commonly considered models. Various groups have performed detailed binary-evolution calculations that lead to BH merger events. However, the question remains open as to whether binary systems with the predicted properties really exist. The aim of this paper is to help observers to close this gap by providing spectral characteristics of massive binary BH progenitors during a phase where at least one of the companions is still non-degenerate. Stellar evolution models predict fundamental stellar parameters. Using these as input for our stellar atmosphere code (PoWR), we compute a set of models for selected evolutionary stages of massive merging BH progenitors at different metallicities. The synthetic spectra obtained from our atmosphere calculations reveal that progenitors of massive BH merger events start their lives as O2-3V stars that evolve to early-type blue supergiants before they undergo core-collapse during the Wolf-Rayet phase. When the primary has collapsed, the remaining system will appear as a wind-fed high-mass X-ray binary. We provide feedback parameters, broad band magnitudes, and spectral templates that should help to identify such binaries in the future. Comparisons of empirically determined mass-loss rates with those assumed by evolution calculations reveal significant differences. The consideration of the empirical mass-loss rates in evolution calculations will possibly entail a shift of the maximum in the predicted binary-BH merger rate to higher metallicities, that is, more candidates should be expected in our cosmic neighborhood than previously assumed.



قيم البحث

اقرأ أيضاً

We present a detailed investigation into the properties of GW170729, the gravitational wave with the most massive and distant source confirmed to date. We employ an extensive set of waveform models, including new improved models that incorporate the effect of higher-order waveform modes which are particularly important for massive systems. We find no indication of spin-precession, but the inclusion of higher-order modes in the models results in an improved estimate for the mass ratio of $(0.3-0.8)$ at the 90% credible level. Our updated measurement excludes equal masses at that level. We also find that models with higher-order modes lead to the data being more consistent with a smaller effective spin, with the probability that the effective spin is greater than zero being reduced from $99%$ to $94%$. The 90% credible interval for the effective spin parameter is now $(-0.01-0.50)$. Additionally, the recovered signal-to-noise ratio increases by $sim0.3$ units compared to analyses without higher-order modes. We study the effect of common spin priors on the derived spin and mass measurements, and observe small shifts in the spins, while the masses remain unaffected. We argue that our conclusions are robust against systematic errors in the waveform models. We also compare the above waveform-based analysis which employs compact-binary waveform models to a more flexible wavelet- and chirplet-based analysis. We find consistency between the two, with overlaps of $sim 0.9$, typical of what is expected from simulations of signals similar to GW170729, confirming that the data are well-described by the existing waveform models. Finally, we study the possibility that the primary component of GW170729 was the remnant of a past merger of two black holes and find this scenario to be indistinguishable from the standard formation scenario.
Theoretically, bound binaries of massive black holes are expected as the natural outcome of mergers of massive galaxies. From the observational side, however, massive black hole binaries remain elusive. Velocity shifts between narrow and broad emissi on lines in quasar spectra are considered a promising observational tool to search for spatially unresolved, dynamically bound binaries. In this series of papers we investigate the nature of such candidates through analyses of their spectra, images and multi-wavelength spectral energy distributions. Here we investigate the properties of the optical spectra, including the evolution of the broad line profiles, of all the sources identified in our previous study. We find a diverse phenomenology of broad and narrow line luminosities, widths, shapes, ionization conditions and time variability, which we can broadly ascribe to 4 classes based on the shape of the broad line profiles: 1) Objects with bell-shaped broad lines with big velocity shifts (>1000 km/s) compared to their narrow lines show a variety of broad line widths and luminosities, modest flux variations over a few years, and no significant change in the broad line peak wavelength. 2) Objects with double-peaked broad emission lines tend to show very luminous and broadened lines, and little time variability. 3) Objects with asymmetric broad emission lines show a broad range of broad line luminosities and significant variability of the line profiles. 4) The remaining sources tend to show moderate to low broad line luminosities, and can be ascribed to diverse phenomena. We discuss the implications of our findings in the context of massive black hole binary searches.
73 - Federico Garcia 2021
We aim to study the progenitor properties and expected rates of the two lowest-mass binary black hole (BH) mergers, GW 151226 and GW 170608, detected within the first two Advanced LIGO-Virgo runs, in the context of the isolated binary-evolution scena rio. We use the public MESA code, which we adapted to include BH formation and unstable mass transfer developed during a common-envelope (CE) phase. Using more than 60000 binary simulations, we explore a wide parameter space for initial stellar masses, separations, metallicities, and mass-transfer efficiencies. We obtain the expected distributions for the chirp mass, mass ratio, and merger time delay by accounting for the initial stellar binary distributions. Our simulations show that, while the progenitors we obtain are compatible over the entire range of explored metallicities, they show a strong dependence on the initial masses of the stars, according to stellar winds. All the progenitors follow a similar evolutionary path, starting from binaries with initial separations in the $30-200~R_odot$ range, experiencing a stable mass transfer interaction before the formation of the first BH, and a second unstable mass-transfer episode leading to a CE ejection that occurs either when the secondary star crosses the Hertzsprung gap or when it is burning He in its core. The CE phase plays a fundamental role in the considered low-mass range: only progenitors experiencing such an unstable mass-transfer phase are able to merge in less than a Hubble time. We find integrated merger-rate densities in the range $0.2-5.0~{rm yr}^{-1}~{rm Gpc}^{-3}$ in the local Universe for the highest mass-transfer efficiencies explored. The highest rate densities lead to detection rates of $1.2-3.3~{rm yr}^{-1}$, being compatible with the observed rates. A high CE-efficiency scenario with $alpha_{rm CE}=2.0$ is favored when comparing with observations. ABRIDGED.
Common-envelope (CE) evolution in massive binary systems is thought to be one of the most promising channels for the formation of compact binary mergers. In the case of merging binary black holes (BBHs), the essential CE phase takes place at a stage when the first BH is already formed and the companion star expands as a supergiant. We study which BH binaries with supergiant companions will evolve through and potentially survive a CE phase. To this end, we compute envelope binding energies from detailed massive stellar models at different evolutionary stages and metallicities. We make multiple physically extreme choices of assumptions that favor easier CE ejection as well as account for recent advancements in mass transfer stability criteria. We find that even with the most optimistic assumptions, a successful CE ejection in BH (and also NS) binaries is only possible if the donor is a massive convective-envelope giant, a red supergiant (RSG). In other words, pre-CE progenitors of BBH mergers are BH binaries with RSG companions. We find that due to its influence on the radial expansion of massive giants, metallicity has an indirect but a very strong effect on the envelope structure and binding energies of RSGs. Our results suggest that merger rates from population synthesis models could be severely overestimated, especially at low metallicity. Additionally, the lack of observed RSGs with luminosities above log($L/L_{odot}$) = 5.6-5.8, corresponding to stars with $M > 40 M_{odot}$, puts into question the viability of the CE channel for the formation of the most massive BBH mergers. Either such RSGs elude detection due to very short lifetimes, or they do not exist and the CE channel can only produce BBH systems with total mass $< 50 M_{odot}$. We discuss an alternative CE scenario, in which a partial envelope ejection is followed by a phase of possibly long and stable mass transfer.
The groundbreaking detection of gravitational waves produced by the inspiralling and coalescence of the black hole (BH) binary GW150914 confirms the existence of heavy stellar-mass BHs with masses >25 Msun. Initial modelling of the system by Abbott e t al. (2016a) supposes that the formation of black holes with such large masses from the evolution of single massive stars is only feasible if the wind mass-loss rates of the progenitors were greatly reduced relative to the mass-loss rates of massive stars in the Galaxy, concluding that heavy BHs must form in low-metallicity (Z < 0.25-0.5 Zsun) environments. However, strong surface magnetic fields also provide a powerful mechanism for modifying mass loss and rotation of massive stars, independent of environmental metallicity (ud-Doula & Owocki 2002; ud-Doula et al. 2008). In this paper we explore the hypothesis that some heavy BHs, with masses >25 Msun such as those inferred to compose GW150914, could be the natural end-point of evolution of magnetic massive stars in a solar-metallicity environment. Using the MESA code, we developed a new grid of single, non-rotating, solar metallicity evolutionary models for initial ZAMS masses from 40-80 Msun that include, for the first time, the quenching of the mass loss due to a realistic dipolar surface magnetic field. The new models predict TAMS masses that are significantly greater than those from equivalent non-magnetic models, reducing the total mass lost by a strongly magnetized 80 Msun star during its main sequence evolution by 20 Msun. This corresponds approximately to the mass loss reduction expected from an environment with metallicity Z = 1/30 Zsun.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا