ﻻ يوجد ملخص باللغة العربية
Single-photon sources based on optical parametric processes have been used extensively for quantum information applications due to their flexibility, room-temperature operation and potential for photonic integration. However, the intrinsically probabilistic nature of these sources is a major limitation for realizing large-scale quantum networks. Active feedforward switching of photons from multiple probabilistic sources is a promising approach that can be used to build a deterministic source. However, previous implementations of this approach that utilize spatial and/or temporal multiplexing suffer from rapidly increasing switching losses when scaled to a large number of modes. Here, we break this limitation via frequency multiplexing in which the switching losses remain fixed irrespective of the number of modes. We use the third-order nonlinear process of Bragg scattering four-wave mixing as an efficient ultra-low noise frequency switch and demonstrate multiplexing of three frequency modes. We achieve a record generation rate of $4.6times10^4$ multiplexed photons per second with an ultra-low $g^{2}(0)$ = 0.07, indicating high single-photon purity. Our scalable, all-fiber multiplexing system has a total loss of just 1.3 dB independent of the number of multiplexed modes, such that the 4.8 dB enhancement from multiplexing three frequency modes markedly overcomes switching loss. Our approach offers a highly promising path to creating a deterministic photon source that can be integrated on a chip-based platform.
The non-deterministic nature of photon sources is a key limitation for single photon quantum processors. Spatial multiplexing overcomes this by enhancing the heralded single photon yield without enhancing the output noise. Here the intrinsic statisti
Heralded single-photon source (HSPS) with competitive single photon purity and indistinguishability has become an essential resource for photonic quantum information processing. Here, for the first time, we proposed a theoretical regime to enhance he
Single-photon sources (SPSs) are mainly characterized by the minimum value of their second-order coherence function, viz. their $g^{(2)}$ function. A precise measurement of $g^{(2)}$ may, however, require high time-resolution devices, in whose absenc
Single photon source represent a fundamental building block for optical implementations of quantum information tasks ranging from basic tests of quantum physics to quantum communication and high-resolution quantum measurement. In this paper we invest
Spontaneous parametric down-conversion (SPDC) in a laser pumped optical nonlinear medium can produce heralded single photons with a high purity but a very low yield. Improving the yield by increasing the pump power in SPDC inevitably reduces the puri