ﻻ يوجد ملخص باللغة العربية
We show how spectral filters can improve the convergence of numerical schemes which use discrete Hilbert transforms based on a sinc function expansion, and thus ultimately on the fast Fourier transform. This is relevant, for example, for the computation of fluctuation identities, which give the distribution of the maximum or the minimum of a random path, or the joint distribution at maturity with the extrema staying below or above barriers. We use as examples the methods by Feng and Linetsky (2008) and Fusai, Germano and Marazzina (2016) to price discretely monitored barrier options where the underlying asset price is modelled by an exponential Levy process. Both methods show exponential convergence with respect to the number of grid points in most cases, but are limited to polynomial convergence under certain conditions. We relate these rates of convergence to the Gibbs phenomenon for Fourier transforms and achieve improved results with spectral filtering.
We study the pricing and hedging of European spread options on correlated assets when, in contrast to the standard framework and consistent with imperfect liquidity markets, the trading in the stock market has a direct impact on stocks prices. We con
We propose a novel algorithm which allows to sample paths from an underlying price process in a local volatility model and to achieve a substantial variance reduction when pricing exotic options. The new algorithm relies on the construction of a disc
This note shows that the cosine expansion based on the Vieta formula is equivalent to a discretization of the Parseval identity. We then evaluate the use of simple direct algorithms to compute the Shannon coefficients for the payoff. Finally, we expl
The Fourier cosine expansion (COS) method is used for pricing European options numerically very fast. To apply the COS method, a truncation interval for the density of the log-returns need to be provided. Using Markovs inequality, we derive a new for
In this paper, we study the valuation of American type derivatives in the stochastic volatility model of Barndorff-Nielsen and Shephard (2001). We characterize the value of such derivatives as the unique viscosity solution of an integral-partial diff