ﻻ يوجد ملخص باللغة العربية
We estimate the extent of overshooting inwards from the bottom of the intershell convective zone in thermal pulses in (S)AGB stars. We find that the buoyancy is so strong that any overshooting should be negligible. The temperature inversion at the bottom of the convective zone adds to the stability of the region. Any mixing that occurs in this region is highly unlikely to be due to convective overshooting, and so must be due to another process.
(abridged) Recent work on several beta Cephei stars has succeeded in constraining both their interior rotation profile and their convective core overshoot. In particular, a recent study focusing on theta$ Oph has shown that a convective core overshoo
Using data from the NASA spacecraft Kepler, we study solar-like oscillations in red-giant stars in the open cluster NGC6811. We determine oscillation frequencies, frequency separations, period spacings of mixed modes and mode visibilities for eight c
We calculated models of massive AGB stars with a self-consistent coupling of time-dependent mixing and nuclear burning for 30 isotopes and 74 reactions. Overshoot with an exponentially declining velocity field was considered and applied during all st
We review the current state of modeling convective mixing in AGB stars. The focus is on results obtained through multi-dimensional hydrodynamic simulations of AGB convection, both in the envelope and the unstable He-shell. Using two different codes a
The hydrogen-deficiency in extremely hot post-AGB stars of spectral class PG1159 is probably caused by a (very) late helium-shell flash or a AGB final thermal pulse that consumes the hydrogen envelope, exposing the usually-hidden intershell region. T