ﻻ يوجد ملخص باللغة العربية
Low-resolution digital-to-analog converters (DACs) and analog-to-digital converters (ADCs) are considered to reduce cost and power consumption in multiuser massive multiple-input multiple-output (MIMO). Using the Bussgang theorem, we derive the asymptotic downlink achievable rate w.r.t the resolutions of both DACs and ADCs, i.e., $b_{DA}$ and $b_{AD}$, under the assumption of large antenna number, $N$, and fixed user load ratio, $beta$. We characterize the rate loss caused by finite-bit-resolution converters and reveal that the quantization distortion is ignorable at low signal-to-noise ratio (SNR) even with low-resolution converters at both sides. While for maintaining the same rate loss at high SNR, it is discovered that one-more-bit DAC resolution is needed when more users are scheduled with $beta$ increased by four times. More specifically for one-bit rate loss requirement, $b_{DA}$ can be set by $leftlceil b_{AD}+frac{1}{2}logbeta rightrceil$ given $b_{AD}$. Similar observations on ADCs are also obtained with numerical verifications.
Low-resolution digital-to-analog converter (DAC) has shown great potential in facilitating cost- and power-efficient implementation of massive multiple-input multiple-output (MIMO) systems. We investigate the performance of a massive MIMO downlink ne
In this paper, we investigate the performance of cell-free massive MIMO systems with massive connectivity. With the generalized approximate message passing (GAMP) algorithm, we obtain the minimum mean-squared error (MMSE) estimate of the effective ch
The robustness of system throughput with scheduling is a critical issue. In this paper, we analyze the sensitivity of multi-user scheduling performance to channel misreporting in systems with massive antennas. The main result is that for the round-ro
Hybrid analog-digital (A/D) transceivers designed for millimeter wave (mmWave) systems have received substantial research attention, as a benefit of their lower cost and modest energy consumption compared to their fully-digital counterparts. We furth
In this paper, we investigate a multiuser relay system with simultaneous wireless information and power transfer. Assuming that both base station (BS) and relay station (RS) are equipped with multiple antennas, this work studies the joint transceiver