ﻻ يوجد ملخص باللغة العربية
The formation of massive stars is still not well understood. Accumulating a large amount of mass infalling within a single entity in spite of radiation pressure is possible if, among several other conditions, enough thermal energy is released. Despite numerous water line observations, with the Herschel Space Observatory, in most of the sources observations were not able to trace the emission from the hot core around the newly forming protostellar object. We want to probe the physical conditions and water abundance in the inner layers of the host protostellar object NGC7538-IRS1 using a highly excited H2O line. Water maser models predict that several THz water masers should be detectable in these objects. We present SOFIA observations of the o-H2O 8(2,7)-7(3,4) line at 1296.41106 GHz and a 6(1,6)-5(2,3) 22 GHz e-MERLIN map of the region (first-ever 22 GHz images made after the e-MERLIN upgrade). In order to be able to constrain the nature of the emission - thermal or maser - we use near-simultaneous observations of the 22 GHz water maser performed with the Effelsberg radiotelescope and e-MERLIN. A thermal water model using the RATRAN radiative transfer code is presented based on HIFI pointed observations. Molecular water abundances are derived for the hot core. The H2O 8(2,7)- 7(3,4) line is detected toward NGC7538-IRS1 with one feature at the source velocity (-57.7 km/s) and another one at -48.4 km/s. We propose that the emission at the source velocity is consistent with thermal excitation and is excited in the innermost part of the IRS1a massive protostellar objects closest circumstellar environment. The other emission is very likely the first detection of a water THz maser line, pumped by shocks due to IRS1b outflow, in a star-forming region. Assuming thermal excitation of the THz line, the water abundance in NGC7538-IRS1s hot core is estimated to be 5.2x10^{-5} with respect to H2.
Spectral lines from formaldehyde (H2CO) molecules at cm wavelengths are typically detected in absorption and trace a broad range of environments, from diffuse gas to giant molecular clouds. In contrast, thermal emission of formaldehyde lines at cm wa
Analysis of high spatial resolution VLA images shows that the free-free emission from NGC7538 IRS1 is dominated by a collimated ionized wind. We have re-analyzed high angular resolution VLA archive data from 6 cm to 7 mm, and measured separately the
We have used the Australia Telescope Compact Array (ATCA) to search for emission from the $4_{-1} rightarrow 3_{0}E$ transition of methanol (36.2 GHz) towards the center of the nearby starburst galaxy NGC253. Two regions of emission were detected, of
22 GHz water and 6.7 GHz methanol masers are usually thought as signposts of early stages of high-mass star formation but little is known about their associations and the physical environments they occur in. The aim was to obtain accurate positions
NGC7538 IRS1 is considered the best high-mass accretion disk candidate around an O-type young star in the northern hemisphere. We investigated the 3D kinematics and dynamics of circumstellar gas with very high linear resolution, from tens to 1500 AU,