ترغب بنشر مسار تعليمي؟ اضغط هنا

Buckyball sandwiches

345   0   0.0 ( 0 )
 نشر من قبل Kimmo Mustonen Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-dimensional (2D) materials have considerably expanded the field of materials science in the last decade. Even more recently, various 2D materials have been assembled into vertical van der Waals heterostacks, and it has been proposed to combine them with other low- dimensional structures to create new materials with hybridized properties. Here, we demonstrate the first direct images of a suspended 0D/2D heterostructure incorporating $C_{60}$ molecules between two graphene layers in a buckyball sandwich structure. We find clean and ordered $C_{60}$ islands with thicknesses down to one molecule, shielded by the graphene layers from the microscope vacuum and partially protected from radiation damage during scanning transmission electron microscopy imaging. The sandwich structure serves as a 2D nanoscale reaction chamber allowing the analysis of the structure of the molecules and their dynamics at atomic resolution.



قيم البحث

اقرأ أيضاً

Recent progress in nanofabrication has led to the emergence of three-dimensional magnetic nanostructures as a vibrant field of research. This includes the study of three-dimensional arrays of interconnected magnetic nanowires with tunable artificial spin-ice properties. Prominent examples of such structures are magnetic buckyball nanoarchitectures, which consist of ferromagnetic nanowires connected at vertex positions corresponding to those of a C60 molecule. These structures can be regarded as prototypes for the study of the transition from two- to three-dimensional spin-ice lattices. In spite of their significance for three-dimensional nanomagnetism, little is known about the micromagnetic properties of buckyball nanostructures. By means of finite-element micromagnetic simulations, we investigate the magnetization structures and the hysteretic properties of several sub-micron-sized magnetic buckyballs. Similar to ordinary artificial spin ice lattices, the array can be magnetized in a variety of zero-field states with vertices exhibiting different degrees of magnetic frustration. Remarkably, and unlike planar geometries, magnetically frustrated states can be reversibly created and dissolved by applying an external magnetic field. This easiness to insert and remove defect-like magnetic charges, made possible by the angle-selectivity of the field-induced switching of individual nanowires, demonstrates a potentially significant advantage of three-dimensional nanomagnetism compared to planar geometries. The control provided by the ability to switch between ice-rule obeying and magnetically frustrated structures could be an important feature of future applications, including magnonic devices exploiting differences in the fundamental frequencies of these configurations.
Based on first-principles density functional theory calculations we explore electronic and magnetic properties of experimentally producible sandwiches and infinite wires made of repeating benzene molecules and transition-metal atoms of V, Nb, and Ta. We describe the bonding mechanism in the molecules and in particular concentrate on the origin of magnetism in these structures. We find that all the considered systems have sizable magnetic moments and ferromagnetic spin-ordering, with the single exception of the V3-Bz4 molecule. By including the spin-orbit coupling into our calculations we determine the easy and hard axes of the magnetic moment, the strength of the uniaxial magnetic anisotropy energy (MAE), relevant for the thermal stability of magnetic orientation, and the change of the electronic structure with respect to the direction of the magnetic moment, important for spin-transport properties. While for the V-based compounds the values of the MAE are only of the order of 0.05-0.5 meV per metal atom, increasing the spin-orbit strength by substituting V with heavier Nb and Ta allows to achieve an increase in anisotropy values by one to two orders of magnitude. The rigid stability of magnetism in these compounds together with the strong ferromagnetic ordering makes them attractive candidates for spin-polarized transport applications. For a Nb-benzene infinite wire the occurrence of ballistic anisotropic magnetoresistance is demonstrated.
Previous studies have accurately determined the effect of transition metal point defects on the properties of bcc iron. The magnetic properties of transition metal monolayers on the iron surfaces have been studied equally intensively. In this work, w e investigated the magnetic properties of the 3d, 4d, and 5d transition-metal (TM) atomic monolayers in Fe/TM/Fe sandwiches using the full-potential local-orbital (FPLO) scheme of density functional theory. We prepared models of Fe/TM/Fe structures using the supercell method. We selected the total thickness of our system so that the Fe atomic layers furthest from the TM layer exhibit bulk iron-bcc properties. Along the direction perpendicular to the TM layer, we observe oscillations of spin and charge density. For Pt and W we obtained the largest values of perpendicular magnetocrystalline anisotropy and for Lu and Ir the largest values of in-plane magnetocrystalline anisotropy. All TM layers, except Co and Ni, reduce the total spin magnetic moment in the generated models, which is in good agreement with the Slater-Pauling curve. Density of states calculations showed that for Ag, Pd, Ir, and Au monolayers, a distinct van Hove singularity associated with TM/Fe interface can be observed at the Fermi level.
Promise Constraint Satisfaction Problems (PCSP) were proposed recently by Brakensiek and Guruswami arXiv:1704.01937 as a framework to study approximations for Constraint Satisfaction Problems (CSP). Informally a PCSP asks to distinguish between wheth er a given instance of a CSP has a solution or not even a specified relaxation can be satisfied. All currently known tractable PCSPs can be reduced in a natural way to tractable CSPs. Barto arXiv:1909.04878 presented an example of a PCSP over Boolean structures for which this reduction requires solving a CSP over an infinite structure. We give a first example of a PCSP over Boolean structures which reduces to a tractable CSP over a structure of size $3$ but not smaller. Further we investigate properties of PCSPs that reduce to systems of linear equations or to CSPs over structures with semilattice or majority polymorphism.
We have investigated CuNi/Nb/CuNi trilayers, as have been recently used as the core structure of a spin-valve like device [J. Y. Gu et al., Phys. Rev. Lett. 89, 267001 (2002)] to study the effect of magnetic configurations of the CuNi layers on the c ritical temperature, Tc, of the superconducting Nb. After reproducing a Tc shift of a few mK, we have gone on to explore the performance limits of the structure. The results showed the Tc shift we found to be quite close to the basic limits of this particular materials system. The ratio between the thickness and the coherence length of the superconductor and the interfacial transparency were the main features limiting the Tc shift.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا