ﻻ يوجد ملخص باللغة العربية
We prove rigorously that the exact N-electron Hohenberg-Kohn density functional converges in the strongly interacting limit to the strictly correlated electrons (SCE) functional, and that the absolute value squared of the associated constrained-search wavefunction tends weakly in the sense of probability measures to a minimizer of the multi-marginal optimal transport problem with Coulomb cost associated to the SCE functional. This extends our previous work for N=2 [CFK11]. The correct limit problem has been derived in the physics literature by Seidl [Se99] and Seidl, Gori-Giorgi and Savin [SGS07]; in these papers the lack of a rigorous proof was pointed out. We also give a mathematical counterexample to this type of result, by replacing the constraint of given one-body density -- an infinite-dimensional quadratic expression in the wavefunction -- by an infinite-dimensional quadratic expression in the wavefunction and its gradient. Connections with the Lawrentiev phenomenon in the calculus of variations are indicated.
The Hohenberg-Kohn theorem plays a fundamental role in density functional theory, which has become a basic tool for the study of electronic structure of matter. In this article, we study the Hohenberg-Kohn theorem for a class of external potentials based on a unique continuation principle.
We study the effect of a cut-off on the speed of pulled fronts of the one dimensional reaction diffusion equation. We prove rigorous upper and lower bounds on the speed in terms of the cut-off parameter epsilon. From these bounds we estimate the rang
This paper is a synopsis of the recent book A. Boritchev, S. Kuksin, textit{One-Dimensional Turbulence and the Stochastic Burgers Equation}, AMS Publications, 2021 (to appear). The book is dedicated to the stochastic Burgers equation as a model for 1
This paper is devoted to the study of a semiclassical black box operator $P$. We estimate the norm of its resolvent truncated near the trapped set by the norm of its resolvent truncated on rings far away from the origin. For $z$ in the unphysical she
A perturbation of a class of scalar Riemann-Hilbert problems (RHPs) with the jump contour as a finite union of oriented simple arcs in the complex plane and the jump function with a $zlog z$ type singularity on the jump contour is considered. The jum