ﻻ يوجد ملخص باللغة العربية
We present evidence of metastable rare quantum-fluctuation switching for the driven dissipative Jaynes-Cummings oscillator coupled to a zero-temperature bath in the strongly dispersive regime. We show that single-atom complex amplitude bistability is accompanied by the appearance of a low-amplitude long-lived transient state, hereinafter called `dark state, having a distribution with quasi-Poissonian statistics both for the coupled qubit and cavity mode. We find that the dark state is linked to a spontaneous flipping of the qubit state, detuning the cavity to a low-photon response. The appearance of the dark state is correlated with the participation of the two metastable states in the dispersive bistability, as evidenced by the solution of the Master Equation and single quantum trajectories.
We propose a reliable scheme to recover the photon blockade effect in the dispersive-Jaynes-Cummings model, which describes a two-level atom coupled to a single-mode cavity field in the large-detuning regime. This is achieved by introducing a transve
The theory of non-Hermitian systems and the theory of quantum deformations have attracted a great deal of attention in the last decades. In general, non-Hermitian Hamiltonians are constructed by a textit{ad hoc} manner. Here, we study the (2+1) Dirac
We study the algebraic structure of the one-dimensional Dirac oscillator by extending the concept of spin symmetry to a noncommutative case. An SO(4) algebra is found connecting the eigenstates of the Dirac oscillator, in which the two elements of
The quantum thermalization of the Jaynes-Cummings (JC) model in both equilibrium and non-equilibrium open-system cases is sdudied, in which the two subsystems, a two-level system and a single-mode bosonic field, are in contact with either two individ
In this paper, we present a protocol to engineer upper-bounded and sliced Jaynes-Cummings and anti-Jaynes-Cummings Hamiltonians in cavity quantum electrodynamics. In the upper-bounded Hamiltonians, the atom-field interaction is confined to a subspace