ﻻ يوجد ملخص باللغة العربية
In this series of lectures, we (re)view the geometric method that reconstructs, from a geometric object: the spectral curve, an integrable system, and in particular its Tau function, Baker-Akhiezer functions and current amplitudes, all having an interpretation as CFT conformal blocks. The construction identifies Hamiltonians with cycles on the curve, and times with periods (integrals of forms over cycles). All the integrable structure is formulated in terms of homology of contours, the phase space is a space of cycles where the symplectic form is the intersection, the Hirota operator is a degree 2 second-kind cycle, a Sato shift is an addition of a 3rd kind cycle, the Hirota equations amount to saying that merging 3rd kind cycles (monopoles) yields a 2nd kind cycle (dipole). The lecture is divided into 3 parts: 1) classical case, perturbative: the spectral curve is a ramified cover of a base Riemann surface -- with some additional structure -- and the integrable system is defined as a formal power series of a small dispersion parameter $epsilon$. 2) dispersive classical case, non perturbative: the spectral curve is defined not as a ramified cover (which would be a bundle with discrete fiber), but as a vector bundle -- whose dispersionless limit consists in chosing a finite set of vectors in each fiber. 3) non-commutative case, and perturbative. The spectral curve is here a non-commutative surface, whose geometry will be defined in lecture III. 4) the full non-commutative dispersionless theory is under development is not presented in these lectures.
We present a physical interpretation of the doubling of the algebra, which is the basic ingredient of the noncommutative spectral geometry, developed by Connes and collaborators as an approach to unification. We discuss its connection to dissipation
We derive Fredholm determinant representation for isomonodromic tau functions of Fuchsian systems with $n$ regular singular points on the Riemann sphere and generic monodromy in $mathrm{GL}(N,mathbb C)$. The corresponding operator acts in the direct
In this paper we outline the construction of semiclassical eigenfunctions of integrable models in terms of the semiclassical path integral for the Poisson sigma model with the target space being the phase space of the integrable system. The semiclass
We define a tau function for a generic Riemann-Hilbert problem posed on a union of non-intersecting smooth closed curves with jump matrices analytic in their neighborhood. The tau function depends on parameters of the jumps and is expressed as the Fr
The asymptotic expansion of the heat-kernel for small values of its argument has been studied in many different cases and has been applied to 1-loop calculations in Quantum Field Theory. In this thesis we consider this asymptotic behavior for certain