ترغب بنشر مسار تعليمي؟ اضغط هنا

Signature of magnon Nernst effect in an antiferromagnetic insulator

85   0   0.0 ( 0 )
 نشر من قبل Yuki Shiomi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A magnon Nernst effect, an antiferromagnetic analogue of the magnon Hall effect in ferromagnetic insulators, has been studied experimentally for a layered antiferromagnetic insulator MnPS3 in contact with two Pt strips. Thermoelectric voltage in the Pt strips grown on MnPS3 single crystals exhibits non-monotonic temperature dependence at low temperatures, which cannot be explained by electronic origins in Pt but can be ascribed to the inverse spin Hall voltage induced by a magnon Nernst effect. Control of antiferromagnetic domains in the MnPS3 crystal by magnetoelectric cooling is found to modulate the low-temperature thermoelectric voltage in Pt, which corroborates the emergence of the magnon Nernst effect in Pt|MnPS3 hybrid structures.

قيم البحث

اقرأ أيضاً

We report on experiments demonstrating coherent control of magnon spin transport and pseudospin dynamics in a thin film of the antiferromagnetic insulator hematite utilizing two Pt strips for all-electrical magnon injection and detection. The measure d magnon spin signal at the detector reveals an oscillation of its polarity as a function of the externally applied magnetic field. We quantitatively explain our experiments in terms of diffusive magnon transport and a coherent precession of the magnon pseudospin caused by the easy-plane anisotropy and the Dzyaloshinskii-Moriya interaction. This experimental observation can be viewed as the magnonic analogue of the electronic Hanle effect and the Datta-Das transistor, unlocking the high potential of antiferromagnetic magnonics towards the realization of rich electronics-inspired phenomena.
77 - K. Dybko , P. Pfeffer , M. Szot 2015
The transverse Nernst Ettingshausen (N-E) effect and electron mobility in Pb$_{1-x}$Sn$_x$Se alloys are studied experimentally and theoretically as functions of temperature and chemical composition in the vicinity of vanishing energy gap $E_g$. The s tudy is motivated by the recent discovery that, by lowering the temperature, one can change the band ordering from trivial to nontrivial one in which the topological crystalline insulator states appear at the surface. Our work presents several new aspects. It is shown experimentally and theoretically that the bulk N-E effect has a maximum when the energy gap $E_g$ of the mixed crystal goes through zero value. This result contradicts the claim made in the literature that the N-E effect changes sign when the gap vanishes. We successfully describe $dc$ transport effects in the situation of extreme bands nonparabolicity which, to the best of our knowledge, has never been tried before. A situation is reached in which both two-dimensional bands (topological surface states) and three-dimensional bands are linear in electron textbf{k} vector. Various scattering modes and their contribution to transport phenomena in Pb$_{1-x}$Sn$_x$Se are analyzed. As the energy gap goes through zero, some transport integrals have a singular (nonphysical) behaviour and we demonstrate how to deal with this problem by introducing damping.
We report large enhancement of thermally injected spin current in normal metal (NM)/antiferromagnet(AF)/yttrium iron garnet(YIG), where a thin AF insulating layer of NiO or CoO can enhance spin current from YIG to a NM by up to a factor of 10. The sp in current enhancement in NM/AF/YIG, with a pronounced maximum near the Neel temperature of the thin AF layer, has been found to scale linearly with the spin-mixing conductance at the NM/YIG interface for NM = 3d, 4d, and 5d metals. Calculations of spin current enhancement and spin mixing conductance are qualitatively consistent with the experimental results.
Magnon-polarons, a type of hybridized excitations between magnons and phonons, were first reported in yttrium iron garnet as anomalies in the spin Seebeck effect responses. Here we report an observation of antiferromagnetic (AFM) magnon-polarons in a uniaxial AFM insulator Cr2O3. Despite the relatively higher energy of magnon than that of the acoustic phonons, near the spin-flop transition of ~ 6 T, the left-handed magnon spectrum shifts downward to hybridize with the acoustic phonons to form AFM magnon-polarons, which can also be probed by the spin Seebeck effect. The spin Seebeck signal is founded to be enhanced due to the magnon-polarons at low temperatures.
The Hall effect can be extended by inducing a temperature gradient in lieu of electric field that is known as the Nernst (-Ettingshausen) effect. The recently discovered spin Nernst effect in heavy metals continues to enrich the picture of Nernst eff ect-related phenomena. However, the collection would not be complete without mentioning the valley degree of freedom benchmarked by the observation of the valley Hall effect. Here we show the experimental evidence of its missing counterpart, the valley Nernst effect. Using millimeter-sized WSe$_{2}$ mono-multi-layers and the ferromagnetic resonance-spin pumping technique, we are able to apply a temperature gradient by off-centering the sample in the radio frequency cavity and address a single valley through spin-valley coupling. The combination of a temperature gradient and the valley polarization leads to the valley Nernst effect in WSe$_{2}$ that we detect electrically at room temperature. The valley Nernst coefficient is in very good agreement with the predicted value.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا