ﻻ يوجد ملخص باللغة العربية
To help reveal the complete picture of linear kinetic drift modes, four independent numerical approaches, based on integral equation, Euler initial value simulation, Euler matrix eigenvalue solution and Lagrangian particle simulation, respectively, are used to solve the linear gyrokinetic electrostatic drift modes equation in Z-pinch with slab simplification and in tokamak with ballooning space coordinate. We identify that these approaches can yield the same solution with the difference smaller than 1%, and the discrepancies mainly come from the numerical convergence, which is the first detailed benchmark of four independent numerical approaches for gyrokinetic linear drift modes. Using these approaches, we find that the entropy mode and interchange mode are on the same branch in Z-pinch, and the entropy mode can have both electron and ion branches. And, at strong gradient, more than one eigenstate of the ion temperature gradient mode (ITG) can be unstable and the most unstable one can be on non-ground eigenstates. The propagation of ITGs from ion to electron diamagnetic direction at strong gradient is also observed, which implies that the propagation direction is not a decisive criterion for the experimental diagnosis of turbulent mode at the edge plasmas.
Geodesic acoustic modes (GAMs) are studied by means of the gyrokinetic global particle-in-cell code ORB5. Linear electromagnetic simulations in the low electron beta limit have been performed, in order to separate acoustic and Alfvenic time scales an
In this work, we propose and compare four different strategies to simulate the fluid model for streamer propagation in one-dimension (1D) and quasi two-dimension (2D), which consists of a Poissons equation for particle velocity and two continuity equ
The Large Eddy Simulation (LES) approach - solving numerically the large scales of a turbulent system and accounting for the small-scale influence through a model - is applied to nonlinear gyrokinetic systems that are driven by a number of different
The gyrokinetic turbulence code GS2 was used to investigate the effects of plasma beta on linear, collisionless ion temperature gradient (ITG) modes and trapped electron modes (TEM) in National Compact Stellarator Experiment (NCSX) geometry. Plasma b
A set of key properties for an ideal dissipation scheme in gyrokinetic simulations is proposed, and implementation of a model collision operator satisfying these properties is described. This operator is based on the exact linearized test-particle co