ﻻ يوجد ملخص باللغة العربية
Given a finite group $G$ and two unitary $G$-representations $V$ and $W$, possible restrictions on Brouwer degrees of equivariant maps between representation spheres $S(V)$ and $S(W)$ are usually expressed in a form of congruences modulo the greatest common divisor of lengths of orbits in $S(V)$ (denoted $alpha(V)$). Effective applications of these congruences is limited by answers to the following questions: (i) under which conditions, is ${alpha}(V)>1$? and (ii) does there exist an equivariant map with the degree easy to calculate? In the present paper, we address both questions. We show that ${alpha}(V)>1$ for each irreducible non-trivial $C[G]$-module if and only if $G$ is solvable. For non-solvable groups, we use 2-transitive actions to construct complex representations with non-trivial ${alpha}$-characteristic. Regarding the second question, we suggest a class of Norton algebras without 2-nilpotents giving rise to equivariant quadratic maps, which admit an explicit formula for the Brouwer degree.
Let $mathcal{J}$ be the exceptional Jordan algebra and $V=mathcal{J}oplus mathcal{J}$. We construct an equivariant map from $V$ to $mathrm{Hom}_k(mathcal{J}otimes mathcal{J},mathcal{J})$ defined by homogeneous polynomials of degree $8$ such that if $
These are notes of a talk to the International Conference on Algebra in honor of A. I. Maltsev, Novosibirsk, USSR, 1989 (to appear in Contemporary Mathematics). The concept of a divisor with complex coefficients on an algebraic curve is introduced. W
We give applications of Foliation Theory to the Classical Invariant Theory of real orthogonal representations, including: The solution of the Inverse Invariant Theory problem for finite groups. An if-and-only-if criterion for when a separating set is
This paper is a continuations of the project initiated in the book string topology for stacks. We construct string operations on the SO(2)-equivariant homology of the (free) loop space $L(X)$ of an oriented differentiable stack $X$ and show that $H^{
Consider a Frobenius kernel G in a split semisimple algebraic group, in very good characteristic. We provide an analysis of support for the Drinfeld center Z(rep(G)) of the representation category for G, or equivalently for the representation categor