ترغب بنشر مسار تعليمي؟ اضغط هنا

Functors of Liftings of Projective Schemes

85   0   0.0 ( 0 )
 نشر من قبل Cristina Bertone
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A classical approach to investigate a closed projective scheme $W$ consists of considering a general hyperplane section of $W$, which inherits many properties of $W$. The inverse problem that consists in finding a scheme $W$ starting from a possible hyperplane section $Y$ is called a {em lifting problem}, and every such scheme $W$ is called a {em lifting} of $Y$. Investigations in this topic can produce methods to obtain schemes with specific properties. For example, any smooth point for $Y$ is smooth also for $W$. We characterize all the liftings of $Y$ with a given Hilbert polynomial by a parameter scheme that is obtained by gluing suitable affine open subschemes in a Hilbert scheme and is described through the functor it represents. We use constructive methods from Grobner and marked bases theories. Furthermore, by classical tools we obtain an analogous result for equidimensional liftings. Examples of explicit computations are provided.



قيم البحث

اقرأ أيضاً

We study matrix factorizations of locally free coherent sheaves on a scheme. For a scheme that is projective over an affine scheme, we show that homomorphisms in the homotopy category of matrix factorizations may be computed as the hypercohomology of a certain mapping complex. Using this explicit description, we give another proof of Orlovs theorem that there is a fully faithful embedding of the homotopy category of matrix factorizations into the singularity category of the corresponding zero subscheme. We also give a complete description of the image of this functor.
Over a smooth and proper complex scheme, the differential Galois group of an integrable connection may be obtained as the closure of the transcendental monodromy representation. In this paper, we employ a completely algebraic variation of this idea b y restricting attention to connections on trivial vector bundles and replacing the fundamental group by a certain Lie algebra constructed from the regular forms. In more detail, we show that the differential Galois group is a certain ``closure of the aforementioned Lie algebra. This is then applied to construct connections on curves with prescribed differential Galois group.
We study the locus of the liftings of a homogeneous ideal $H$ in a polynomial ring over any field. We prove that this locus can be endowed with a structure of scheme $mathrm L_H$ by applying the constructive methods of Grobner bases, for any given te rm order. Indeed, this structure does not depend on the term order, since it can be defined as the scheme representing the functor of liftings of $H$. We also provide an explicit isomorphism between the schemes corresponding to two different term orders. Our approach allows to embed $mathrm L_H$ in a Hilbert scheme as a locally closed subscheme, and, over an infinite field, leads to find interesting topological properties, as for instance that $mathrm L_H$ is connected and that its locus of radical liftings is open. Moreover, we show that every ideal defining an arithmetically Cohen-Macaulay scheme of codimension two has a radical lifting, giving in particular an answer to an open question posed by L. G. Roberts in 1989.
The BKK theorem states that the mixed volume of the Newton polytopes of a system of polynomial equations upper bounds the number of isolated torus solutions of the system. Homotopy continuation solvers make use of this fact to pick efficient start sy stems. For systems where the mixed volume bound is not attained, such methods are still tracking more paths than necessary. We propose a strategy of improvement by lifting a system to an equivalent system with a strictly lower mixed volume at the expense of more variables. We illustrate this idea providing lifting constructions for arbitrary bivariate systems and certain dense-enough systems.
For two DG-categories A and B we define the notion of a spherical Morita quasi-functor A -> B. We construct its associated autoequivalences: the twist T of D(B) and the co-twist F of D(A). We give powerful sufficiency criteria for a quasi-functor to be spherical and for the twists associated to a collection of spherical quasi-functors to braid. Using the framework of DG-enhanced triangulated categories, we translate all of the above to Fourier-Mukai transforms between the derived categories of algebraic varieties. This is a broad generalisation of the results on spherical objects in [ST01] and on spherical functors in [Ann07]. In fact, this paper replaces [Ann07], which has a fatal gap in the proof of its main theorem. Though conceptually correct, the proof was impossible to fix within the framework of triangulated categories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا