ترغب بنشر مسار تعليمي؟ اضغط هنا

Weak Metallic Emission Lines in Early B-Type Stars

91   0   0.0 ( 0 )
 نشر من قبل Kozo Sadakane
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Previously unrecognized weak emission lines originating from high excitation states of Si II (12.84 eV) and Al II (13.08 eV) are detected in the red region spectra of slowly rotating early B-type stars. We surveyed high resolution spectra of 35 B-type stars covering spectral sub-types between B1 and B7 near the main sequence and found the emission line of SiII at 6239.6 A in all 13 stars having spectral sub-types B2 and B2.5. There are 17 stars belonging to sub-type B3 and seven stars among them are found to show the emission line of Si II. The emission line of Al II at 6243.4 A is detected in a narrower temperature range (Teff between 19000K and 23000 K) in nine stars. Both of these emission lines are not detected in cooler (Teff < 16000 K) stars in our sample. The emission line of Si II at 6239.6 A shows a single-peaked and symmetric profile and the line center has no shift in wavelength with respect to those of low excitation absorption lines of Si II. Measured half width of the emission line is the same as those of rotationally broadened low excitation absorption lines of Si II. These observations imply that the emitting gas is not circumstellar origin, but is located at the outermost layer of the atmosphere, covering the whole stellar surface and co-rotates with the star.



قيم البحث

اقرأ أيضاً

Almost three decades ago, Mathys (1990) demonstrated the importance of studying Ap stars showing resolved Zeeman split Fe II 6147.7 and 6149.2 lines. Such Zeeman split lines can be seen in stars whose projected rotational velocity is sufficiently sma ll and whose magnetic field is strong enough to exceed the rotational Doppler broadening. Observations of resolved Zeeman split lines permit the diagnosis of the average of the modulus of the magnetic field over the visible stellar hemisphere. Although Zeeman splitting is not expected in faster rotating hot massive stars, we have recently been discovering early B-type stars displaying magnetically split spectral lines.
We present a model atom for C I - C II - C III - C IV using the most up-to-date atomic data and evaluated the non-local thermodynamic equilibrium (NLTE) line formation in classical 1D atmospheric models of O-B-type stars. Our models predict the emiss ion lines of C II 9903~AA and 18535~AA to appear at effective temperature Teff~$geq$~17,500~K, those of C II 6151~AA and 6461~AA to appear at Teff~$>$~25,000~K, and those of C III 5695, 6728--44, 9701--17~AA to appear at Teff~$geq$~35,000~K (log~$g$=4.0). Emission occurs in the lines of minority species, where the photoionization-recombination mechanism provides a depopulation of the lower levels to a greater extent than the upper levels. For C II 9903 and 18535~AA, the upper levels are mainly populated from C III reservoir through the Rydberg states. For C III 5695 and 6728--44~AA, the lower levels are depopulated due to photon losses in UV transitions at 885, 1308, and 1426--28~AA which become optically thin in the photosphere. We analysed the lines of C I, C II, C III, and C IV for twenty-two O-B-type stars with temperature range between 15,800 $leq$~Teff~$leq$ 38,000~K. Abundances from emission lines of C I, C II and C III are in agreement with those from absorption ones for most of the stars. We obtained log~$epsilon_{rm C}$=8.36$pm$0.08 from twenty B-type stars, that is in line with the present-day Cosmic Abundance Standard. The obtained carbon abundances in 15~Mon and HD~42088 from emission and absorption lines are 8.27$pm$0.11 and 8.31$pm$0.11, respectively.
We present a list of weak emission lines (WELs) observed in a sharp-lined B3 V star {iota} Her (HD 160762) using high resolution (R = 65000) and high SN (~1300) spectral data. The list covers a spectral region between 4900A and 10000A. We register 20 7 WELs in this star and identified 190 lines including ten ions (nine elements). Emission lines of C II, N I, Cr II, Mn II, and Ni II have been identified among normal B-type stars for the first time. 17 emission lines remain unidentified. We compare our list with the published list of WELs for 3 Cen A (Wahlgren and Hubrig 2004) and found that numbers of detected emission lines reflect differences in abundance between these two stars. We detect 13 C I emission lines in iota Her (normal in C), while only one C I emission line is found in 3 Cen A (deficient in C). Many emission lines of P II and Cu II have been detected in 3 Cen A (overabundant in both P and Cu), while no emission line of these ions has been found in {iota} Her. Many emission lines of Fe II are visible in the shorter wavelength side of 6000 A in iota Her, while these emission lines are missing in 3 Cen A. Close inspections of spectral data of 3 Cen A reveal that apparently missing Fe II lines appear as absorption lines in this star. Because these two stars have nearly the same atmospheric parameters (Teff and log g), a physical interpretation which is independent on these two parameters is needed to account for this observation.
We constructed a comprehensive model atom for Cione -- Cii using the most up-to-date atomic data available and evaluated the non-local thermodynamic equilibrium (NLTE) line formation for Cione and Cii in classical 1D models representing the atmospher es of A and late B-type stars. Our NLTE calculations predict the emission that appears at effective temperature of 9250 to 10,500~K depending on log~$g$ in the Cione 8335, 9405,AA singlet lines and at Teff~$>$~15,000~K (log~$g$ = 4) in the Cione 9061 -- 9111,AA,, 9603 -- 9658,AA, triplet lines. A prerequisite of the emission phenomenon is the overionization-recombination mechanism resulting in a depopulation of the lower levels of Cione to a greater extent than the upper levels. Extra depopulation of the lower levels of the transitions corresponding to the near-infrared lines, is caused by photon loss in the UV lines Cione 2479, 1930, and 1657,AA. We analysed the lines of Cione and Cii in Vega, HD~73666, Sirius, 21~Peg, $pi$~Cet, HD~22136, and $iota$ Her taking advantage of their observed high-resolution spectra. The Cione emission lines were detected in the four hottest stars, and they were well reproduced in our NLTE calculations. For each star, the mean NLTE abundances from lines of the two ionization stages, Cione and Cii, including the Cione emission lines, were found to be consistent. We show that the predicted Cione emission phenomenon depends strongly on whether accurate or approximate electron-impact excitation rates are applied.
Massive, early type stars have been detected as radio sources for many decades. Their thermal winds radiate free-free continuum and in binary systems hosting a colliding-wind region, non-thermal emission has also been detected. To date, the most abun dant data have been collected from frequencies higher than 1 GHz. We present here the results obtained from observations at 325 and 610 MHz, carried out with the Giant Metrewave Radio Telescope, of all known Wolf-Rayet and O-type stars encompassed in area of ~15 sq degrees centred on the Cygnus region. We report on the detection of 11 massive stars, including both Wolf-Rayet and O-type systems. The measured flux densities at decimeter wavelengths allowed us to study the radio spectrum of the binary systems and to propose a consistent interpretation in terms of physical processes affecting the wide-band radio emission from these objects. WR 140 was detected at 610 MHz, but not at 325 MHz, very likely because of the strong impact of free-free absorption. We also report - for the first time - on the detection of a colliding-wind binary system down to 150 MHz, pertaining to the system of WR 146, making use of complementary information extracted from the TIFR GMRT Sky Survey. Its spectral energy distribution clearly shows the turnover at a frequency of about 600 MHz, that we interpret to be due to free-free absorption. Finally, we report on the identification of two additional particle-accelerating colliding-wind binaries, namely Cyg OB2 12 and ALS 15108 AB.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا