ترغب بنشر مسار تعليمي؟ اضغط هنا

A Frame Tracking Model for Memory-Enhanced Dialogue Systems

70   0   0.0 ( 0 )
 نشر من قبل Hannes Schulz
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, resources and tasks were proposed to go beyond state tracking in dialogue systems. An example is the frame tracking task, which requires recording multiple frames, one for each user goal set during the dialogue. This allows a user, for instance, to compare items corresponding to different goals. This paper proposes a model which takes as input the list of frames created so far during the dialogue, the current user utterance as well as the dialogue acts, slot types, and slot values associated with this utterance. The model then outputs the frame being referenced by each triple of dialogue act, slot type, and slot value. We show that on the recently published Frames dataset, this model significantly outperforms a previously proposed rule-based baseline. In addition, we propose an extensive analysis of the frame tracking task by dividing it into sub-tasks and assessing their difficulty with respect to our model.



قيم البحث

اقرأ أيضاً

Dialogue management (DM) decides the next action of a dialogue system according to the current dialogue state, and thus plays a central role in task-oriented dialogue systems. Since dialogue management requires to have access to not only local uttera nces, but also the global semantics of the entire dialogue session, modeling the long-range history information is a critical issue. To this end, we propose a novel Memory-Augmented Dialogue management model (MAD) which employs a memory controller and two additional memory structures, i.e., a slot-value memory and an external memory. The slot-value memory tracks the dialogue state by memorizing and updating the values of semantic slots (for instance, cuisine, price, and location), and the external memory augments the representation of hidden states of traditional recurrent neural networks through storing more context information. To update the dialogue state efficiently, we also propose slot-level attention on user utterances to extract specific semantic information for each slot. Experiments show that our model can obtain state-of-the-art performance and outperforms existing baselines.
Recent works in dialogue state tracking (DST) focus on an open vocabulary-based setting to resolve scalability and generalization issues of the predefined ontology-based approaches. However, they are inefficient in that they predict the dialogue stat e at every turn from scratch. Here, we consider dialogue state as an explicit fixed-sized memory and propose a selectively overwriting mechanism for more efficient DST. This mechanism consists of two steps: (1) predicting state operation on each of the memory slots, and (2) overwriting the memory with new values, of which only a few are generated according to the predicted state operations. Our method decomposes DST into two sub-tasks and guides the decoder to focus only on one of the tasks, thus reducing the burden of the decoder. This enhances the effectiveness of training and DST performance. Our SOM-DST (Selectively Overwriting Memory for Dialogue State Tracking) model achieves state-of-the-art joint goal accuracy with 51.72% in MultiWOZ 2.0 and 53.01% in MultiWOZ 2.1 in an open vocabulary-based DST setting. In addition, we analyze the accuracy gaps between the current and the ground truth-given situations and suggest that it is a promising direction to improve state operation prediction to boost the DST performance.
This paper presents the Frames dataset (Frames is available at http://datasets.maluuba.com/Frames), a corpus of 1369 human-human dialogues with an average of 15 turns per dialogue. We developed this dataset to study the role of memory in goal-oriente d dialogue systems. Based on Frames, we introduce a task called frame tracking, which extends state tracking to a setting where several states are tracked simultaneously. We propose a baseline model for this task. We show that Frames can also be used to study memory in dialogue management and information presentation through natural language generation.
Task-oriented conversational systems often use dialogue state tracking to represent the users intentions, which involves filling in values of pre-defined slots. Many approaches have been proposed, often using task-specific architectures with special- purpose classifiers. Recently, good results have been obtained using more general architectures based on pretrained language models. Here, we introduce a new variation of the language modeling approach that uses schema-driven prompting to provide task-aware history encoding that is used for both categorical and non-categorical slots. We further improve performance by augmenting the prompting with schema descriptions, a naturally occurring source of in-domain knowledge. Our purely generative system achieves state-of-the-art performance on MultiWOZ 2.2 and achieves competitive performance on two other benchmarks: MultiWOZ 2.1 and M2M. The data and code will be available at https://github.com/chiahsuan156/DST-as-Prompting.
Language models (LM) for interactive speech recognition systems are trained on large amounts of data and the model parameters are optimized on past user data. New application intents and interaction types are released for these systems over time, imp osing challenges to adapt the LMs since the existing training data is no longer sufficient to model the future user interactions. It is unclear how to adapt LMs to new application intents without degrading the performance on existing applications. In this paper, we propose a solution to (a) estimate n-gram counts directly from the hand-written grammar for training LMs and (b) use constrained optimization to optimize the system parameters for future use cases, while not degrading the performance on past usage. We evaluated our approach on new applications intents for a personal assistant system and find that the adaptation improves the word error rate by up to 15% on new applications even when there is no adaptation data available for an application.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا