ﻻ يوجد ملخص باللغة العربية
This paper studies a non-random-walk Markov Chain Monte Carlo method, namely the Hamiltonian Monte Carlo (HMC) method in the context of Subset Simulation used for structural reliability analysis. The HMC method relies on a deterministic mechanism inspired by Hamiltonian dynamics to propose samples following a target probability distribution. The method alleviates the random walk behavior to achieve a more effective and consistent exploration of the probability space compared to standard Gibbs or Metropolis-Hastings techniques. After a brief review of the basic concepts of the HMC method and its computational details, two algorithms are proposed to facilitate the application of the HMC method to Subset Simulation in structural reliability analysis. Next, the behavior of the two HMC algorithms is illustrated using simple probability distribution models. Finally, the accuracy and efficiency of Subset Simulation employing the two HMC algorithms are tested using various reliability examples. The supporting source code and data are available for download at (the URL that will become available once the paper is accepted).
In this paper, we develop Bayesian Hamiltonian Monte Carlo methods for inference in asymmetric GARCH models under different distributions for the error term. We implemented Zero-variance and Hamiltonian Monte Carlo schemes for parameter estimation to
Hamiltonian Monte Carlo (HMC) has been widely adopted in the statistics community because of its ability to sample high-dimensional distributions much more efficiently than other Metropolis-based methods. Despite this, HMC often performs sub-optimall
We present a method for performing Hamiltonian Monte Carlo that largely eliminates sample rejection for typical hyperparameters. In situations that would normally lead to rejection, instead a longer trajectory is computed until a new state is reached
This article reviews the application of advanced Monte Carlo techniques in the context of Multilevel Monte Carlo (MLMC). MLMC is a strategy employed to compute expectations which can be biased in some sense, for instance, by using the discretization
Dynamically rescaled Hamiltonian Monte Carlo (DRHMC) is introduced as a computationally fast and easily implemented method for performing full Bayesian analysis in hierarchical statistical models. The method relies on introducing a modified parameter