ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrostatic mechanophores in tuneable light-emitting piezo-polymer nanowires

85   0   0.0 ( 0 )
 نشر من قبل Dario Pisignano
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Luana Persano




اسأل ChatGPT حول البحث

Electromechanical coupling through piezoelectric polymer chains allows the emission of organic molecules in active nanowires to be tuned. This effect is evidenced by highly bendable arrays of counter-ion dye-doped nanowires made of a poly(vinylidenefluoride) copolymer. A reversible redshift of the dye emission is found upon the application of dynamic stress during highly accurate bending experiments. By density functional theory calculations it is found that these photophysical properties are associated with mechanical stresses applied to electrostatically interacting molecular systems, namely to counterion-mediated states that involve light-emitting molecules as well as charged regions of piezoelectric polymer chains. These systems are an electrostatic class of supramolecular functional stress-sensitive units, which might impart new functionalities in hybrid molecular nanosystems and anisotropic nanostructures for sensing devices and soft robotics.



قيم البحث

اقرأ أيضاً

The authors report on the realization of ordered arrays of light-emitting conjugated polymer nanofibers by near-field electrospinning. The fibers, made by poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene], have diameters of few hundreds of na nometers and emission peaked at 560 nm. The observed blue-shift compared to the emission from reference films is attributed to different polymer packing in the nanostructures. Optical confinement in the fibers is also analyzed through self-waveguided emission. These results open interesting perspectives for realizing complex and ordered architectures by light-emitting nanofibers, such as photonic circuits, and for the precise positioning and integration of conjugated polymer fibers into light-emitting devices.
Entangled light emitting diodes based on semiconductor quantum dots are promising devices for security sensitive quantum network applications, thanks to their natural lack of multi photon-pair generation. Apart from telecom wavelength emission, netwo rk integrability of these sources ideally requires electrical operation for deployment in compact systems in the field. For multiplexing of entangled photons with classical data traffic, emission in the telecom O-band and tuneability to the nearest wavelength channel in compliance with coarse wavelength division multiplexing standards (20 nm channel spacing) is highly desirable. Here we show the first fully electrically operated telecom entangled light emitting diode with wavelength tuneability of more than 25nm, deployed in an installed fiber network. With the source tuned to 1310.00 nm, we demonstrate multiplexing of true single entangled photons with classical data traffic and achieve entanglement fidelities above 95% on an installed fiber in a city.
Molybdenum disulfide (MoS2) has been attracting extraordinary attention for its intriguing optical, electronic and mechanical properties. Here we demonstrate hybrid, organic-inorganic light-emitting nanofibers based on MoS2 nanoparticle dopants obtai ned through a simple and inexpensive sonication process in N-methyl-2-pyrrolidone and successfully encapsulated in polymer filaments. Defectiveness is found to be kept low, and stoichiometry preserved, by the implemented, gentle exfoliation method that allows the MoS2 nanoparticles to be produced. So-achieved hybrid fibers are smooth, uniform, flawless, and exhibit bright and continuous light emission. Moreover, they show significant capability of waveguiding self-emitted light along their longitudinal axis. These findings suggest the use of emissive MoS2 fibers enabled by gentle exfoliation methods as novel and highly promising optical material for building sensing surfaces and as components of photonic circuits.
Polyvinylidenefluoride (PVDF) a semicrystalline pieozoelectric polymer was synthesized with varying process conditions and its ferroelectric domain orientations were studied using piezoresponse force microscope (PFM). PVDF thin films fabricated using tape casting technique with precursor solutions of varying viscosities reveal that the polarization components transform from a dominant planar component to an out-of-plane polarization components with increase in viscosity. Interestingly the planar components possessed a head to head or tail to tail kind of paired domains separated by a distance of ~ 380-400nm. The electrostatic energies computed by numerically solving the electrostatic equilibrium equation for the electrically inhomogeneous system are in good correlation with the experiments. On increment of electric field, the domains were observed to grow in size and shape which indicates amorphous to crystalline transformation in the case of PVDF. Such transformation was evident from x-ray diffraction studies performed in-situ in the presence of an applied electric field.
171 - Luana Persano 2014
We provide a detailed insight into piezoelectric energy generation from arrays of polymer nanofibers. For sake of comparison, we firstly measure individual poly(vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFe)) fibers at well-defined levels of c ompressive stress. Under an applied load of 2 mN, single nanostructures generate a voltage of 0.45 mV. We show that under the same load conditions, fibers in dense arrays exhibit a voltage output higher by about two orders of magnitude. Numerical modelling studies demonstrate that the enhancement of the piezoelectric response is a general phenomenon associated to the electromechanical interaction among adjacent fibers, namely a cooperative effect depending on specific geometrical parameters. This establishes new design rules for next piezoelectric nano-generators and sensors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا