ﻻ يوجد ملخص باللغة العربية
We present a technique to diagnose the condensate fraction in a one-dimensional optical lattice of weakly interacting bosons based on the dynamics of the trapped atoms under the influence of a momentum kick. It is shown using the Multi-Configuration Time Dependent Hartree method for Bosons (MCTDHB) that the two extreme cases of the superfluid and Mott insulator states exhibit different behaviors when the lattice is briefly tilted. The current induced by the momentum boost caused by the tilt which depends directly on the amount of phase coherence between the lattice sites is linearly proportional to the condensate fraction. The atom-atom interactions only change the slope of the linear relationship. We discuss the applications of this scheme in magnetic field gradiometery.
These notes were written for a set of three lectures given in a school at the Max Planck Institute for the Physics of Complex Systems in October/2017 before the workshop Critical Stability of Quantum Few-Body Systems. These lectures are primarily ded
We propose a method to probe time dependent correlations of non trivial observables in many-body ultracold lattice gases. The scheme uses a quantum non-demolition matter-light interface, first, to map the observable of interest on the many body syste
Chimera states are complex spatiotemporal patterns in networks of identical oscillators, characterized by the coexistence of synchronized and desynchronized dynamics. Here we propose to extend the phenomenon of chimera states to the quantum regime, a
Quantum spin liquids, exotic phases of matter with topological order, have been a major focus of explorations in physical science for the past several decades. Such phases feature long-range quantum entanglement that can potentially be exploited to r
Quantum interferometers are generally set so that phase differences between paths in coordinate space combine constructive or destructively. Indeed, the interfering paths can also meet in momentum space leading to momentum-space fringes. We propose a