ﻻ يوجد ملخص باللغة العربية
This paper revisits visual saliency prediction by evaluating the recent advancements in this field such as crowd-sourced mouse tracking-based databases and contextual annotations. We pursue a critical and quantitative approach towards some of the new challenges including the quality of mouse tracking versus eye tracking for model training and evaluation. We extend quantitative evaluation of models in order to incorporate contextual information by proposing an evaluation methodology that allows accounting for contextual factors such as text, faces, and object attributes. The proposed contextual evaluation scheme facilitates detailed analysis of models and helps identify their pros and cons. Through several experiments, we find that (1) mouse tracking data has lower inter-participant visual congruency and higher dispersion, compared to the eye tracking data, (2) mouse tracking data does not totally agree with eye tracking in general and in terms of different contextual regions in specific, and (3) mouse tracking data leads to acceptable results in training current existing models, and (4) mouse tracking data is less reliable for model selection and evaluation. The contextual evaluation also reveals that, among the studied models, there is no single model that performs best on all the tested annotations.
Models in Interactive Information Retrieval (IIR) are grounded very much on the users task in order to give system support based on different task types and topics. However, the automatic recognition of user interests from log data in search systems
We present a method to infer the 3D pose of mice, including the limbs and feet, from monocular videos. Many human clinical conditions and their corresponding animal models result in abnormal motion, and accurately measuring 3D motion at scale offers
Electromyography (EMG) signals have been successfully employed for driving prosthetic limbs of a single or double degree of freedom. This principle works by using the amplitude of the EMG signals to decide between one or two simpler movements. This m
Existing state-of-the-art saliency detection methods heavily rely on CNN-based architectures. Alternatively, we rethink this task from a convolution-free sequence-to-sequence perspective and predict saliency by modeling long-range dependencies, which
Saccadic eye movements allow animals to bring different parts of an image into high-resolution. During free viewing, inhibition of return incentivizes exploration by discouraging previously visited locations. Despite this inhibition, here we show tha