ﻻ يوجد ملخص باللغة العربية
Bose-Einstein condensates with balanced gain and loss can support stationary states despite the exchange of particles with the environment. In the mean-field approximation this is described by the PT-symmetric Gross-Pitaevskii equation with real eigenvalues. In this work we study the role of stationary states in the appropriate many-particle description. It is shown that without particle interaction there exist two non-oscillating trajectories which can be interpreted as the many-particle equivalent of the stationary PT-symmetric mean-field states. Furthermore the system has a non-equilibrium steady state which acts as an attractor in the oscillating regime. This steady state is a pure condensate for strong gain and loss contributions if the interaction between the particles is sufficiently weak.
In this work we present a new generic feature of PT-symmetric Bose-Einstein condensates by studying the many-particle description of a two-mode condensate with balanced gain and loss. This is achieved using a master equation in Lindblad form whose me
Balanced gain and loss renders the mean-field description of Bose-Einstein condensates PT symmetric. However, any experimental realization has to deal with unbalancing in the gain and loss contributions breaking the PT symmetry. We will show that suc
Most of the work done in the field of Bose-Einstein condensates with balanced gain and loss has been performed in the mean-field approximation using the PT-symmetric Gross-Pitaevskii equation. In this work we study the many-particle dynamics of a two
We investigate vortex excitations in dilute Bose-Einstein condensates in the presence of complex $mathcal{PT}$-symmetric potentials. These complex potentials are used to describe a balanced gain and loss of particles and allow for an easier calculati
We investigate the Su-Schrieffer-Heeger model in presence of an injection and removal of particles, introduced via a master equation in Lindblad form. It is shown that the dynamics of the density matrix follows the predictions of calculations in whic