ﻻ يوجد ملخص باللغة العربية
Recently, optimization techniques have had a significant impact in a variety of fields, leading to a higher signal-to-noise and more streamlined techniques. We consider the possibility for using programmable phase-only spatial optimization of the pump beam to influence the supercontinuum generation process. Preliminary results show that significant broadening and rough control of the supercontinuum spectrum are possible without loss of input energy. This serves as a proof-of-concept demonstration that spatial effects can controllably influence the supercontinuum spectrum, leading to possibilities for utilizing supercontinuum power more efficiently and achieving arbitrary spectral control.
Many emerging reconfigurable optical systems are limited by routing complexity when producing dynamic, two-dimensional (2D) electric fields. Using a gradient-based inverse designed, static phase-mask doublet, we propose an optical system to produce 2
Active longitudinal beam optics can help FEL facilities achieve cutting edge performance by optimizing the beam to: produce multi-color pulses, suppress caustics, or support attosecond lasing. As the next generation of superconducting accelerators co
X-ray mirrors with high focusing performances are in use in both mirror modules for X-ray telescopes and in synchrotron and FEL (Free Electron Laser) beamlines. A degradation of the focus sharpness arises in general from geometrical deformations and
We report a 1 um continuous wave pumped supercontinuum which extends short of the pump wavelength to 0.65 um. This is achieved by using a 50 W Yb fibre laser in combination with a photonic crystal fibre with a carefully engineered zero dispersion wav
High sidelobe level and direction of arrival (DOA) estimation sensitivity are two major disadvantages of the Capon beamforming. To deal with these problems, this paper gives an overview of a series of robust Capon beamforming methods via shaping beam