ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-modal Subspace Learning for Fine-grained Sketch-based Image Retrieval

154   0   0.0 ( 0 )
 نشر من قبل Peng Xu
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Sketch-based image retrieval (SBIR) is challenging due to the inherent domain-gap between sketch and photo. Compared with pixel-perfect depictions of photos, sketches are iconic renderings of the real world with highly abstract. Therefore, matching sketch and photo directly using low-level visual clues are unsufficient, since a common low-level subspace that traverses semantically across the two modalities is non-trivial to establish. Most existing SBIR studies do not directly tackle this cross-modal problem. This naturally motivates us to explore the effectiveness of cross-modal retrieval methods in SBIR, which have been applied in the image-text matching successfully. In this paper, we introduce and compare a series of state-of-the-art cross-modal subspace learning methods and benchmark them on two recently released fine-grained SBIR datasets. Through thorough examination of the experimental results, we have demonstrated that the subspace learning can effectively model the sketch-photo domain-gap. In addition we draw a few key insights to drive future research.


قيم البحث

اقرأ أيضاً

A fundamental challenge faced by existing Fine-Grained Sketch-Based Image Retrieval (FG-SBIR) models is the data scarcity -- model performances are largely bottlenecked by the lack of sketch-photo pairs. Whilst the number of photos can be easily scal ed, each corresponding sketch still needs to be individually produced. In this paper, we aim to mitigate such an upper-bound on sketch data, and study whether unlabelled photos alone (of which they are many) can be cultivated for performances gain. In particular, we introduce a novel semi-supervised framework for cross-modal retrieval that can additionally leverage large-scale unlabelled photos to account for data scarcity. At the centre of our semi-supervision design is a sequential photo-to-sketch generation model that aims to generate paired sketches for unlabelled photos. Importantly, we further introduce a discriminator guided mechanism to guide against unfaithful generation, together with a distillation loss based regularizer to provide tolerance against noisy training samples. Last but not least, we treat generation and retrieval as two conjugate problems, where a joint learning procedure is devised for each module to mutually benefit from each other. Extensive experiments show that our semi-supervised model yields significant performance boost over the state-of-the-art supervised alternatives, as well as existing methods that can exploit unlabelled photos for FG-SBIR.
Current supervised sketch-based image retrieval (SBIR) methods achieve excellent performance. However, the cost of data collection and labeling imposes an intractable barrier to practical deployment of real applications. In this paper, we present the first attempt at unsupervised SBIR to remove the labeling cost (category annotations and sketch-photo pairings) that is conventionally needed for training. Existing single-domain unsupervised representation learning methods perform poorly in this application, due to the unique cross-domain (sketch and photo) nature of the problem. We therefore introduce a novel framework that simultaneously performs unsupervised representation learning and sketch-photo domain alignment. Technically this is underpinned by exploiting joint distribution optimal transport (JDOT) to align data from different domains during representation learning, which we extend with trainable cluster prototypes and feature memory banks to further improve scalability and efficacy. Extensive experiments show that our framework achieves excellent performance in the new unsupervised setting, and performs comparably or better than state-of-the-art in the zero-shot setting.
Deep hashing approaches, including deep quantization and deep binary hashing, have become a common solution to large-scale image retrieval due to high computation and storage efficiency. Most existing hashing methods can not produce satisfactory resu lts for fine-grained retrieval, because they usually adopt the outputs of the last CNN layer to generate binary codes, which is less effective to capture subtle but discriminative visual details. To improve fine-grained image hashing, we propose Pyramid Hybrid Pooling Quantization (PHPQ). Specifically, we propose a Pyramid Hybrid Pooling (PHP) module to capture and preserve fine-grained semantic information from multi-level features. Besides, we propose a learnable quantization module with a partial attention mechanism, which helps to optimize the most relevant codewords and improves the quantization. Comprehensive experiments demonstrate that PHPQ outperforms state-of-the-art methods.
Cross-modal hashing facilitates mapping of heterogeneous multimedia data into a common Hamming space, which can beutilized for fast and flexible retrieval across different modalities. In this paper, we propose a novel cross-modal hashingarchitecture- deep neural decoder cross-modal hashing (DNDCMH), which uses a binary vector specifying the presence of certainfacial attributes as an input query to retrieve relevant face images from a database. The DNDCMH network consists of two separatecomponents: an attribute-based deep cross-modal hashing (ADCMH) module, which uses a margin (m)-based loss function toefficiently learn compact binary codes to preserve similarity between modalities in the Hamming space, and a neural error correctingdecoder (NECD), which is an error correcting decoder implemented with a neural network. The goal of NECD network in DNDCMH isto error correct the hash codes generated by ADCMH to improve the retrieval efficiency. The NECD network is trained such that it hasan error correcting capability greater than or equal to the margin (m) of the margin-based loss function. This results in NECD cancorrect the corrupted hash codes generated by ADCMH up to the Hamming distance of m. We have evaluated and comparedDNDCMH with state-of-the-art cross-modal hashing methods on standard datasets to demonstrate the superiority of our method.
It is widely acknowledged that learning joint embeddings of recipes with images is challenging due to the diverse composition and deformation of ingredients in cooking procedures. We present a Multi-modal Semantics enhanced Joint Embedding approach ( MSJE) for learning a common feature space between the two modalities (text and image), with the ultimate goal of providing high-performance cross-modal retrieval services. Our MSJE approach has three unique features. First, we extract the TFIDF feature from the title, ingredients and cooking instructions of recipes. By determining the significance of word sequences through combining LSTM learned features with their TFIDF features, we encode a recipe into a TFIDF weighted vector for capturing significant key terms and how such key terms are used in the corresponding cooking instructions. Second, we combine the recipe TFIDF feature with the recipe sequence feature extracted through two-stage LSTM networks, which is effective in capturing the unique relationship between a recipe and its associated image(s). Third, we further incorporate TFIDF enhanced category semantics to improve the mapping of image modality and to regulate the similarity loss function during the iterative learning of cross-modal joint embedding. Experiments on the benchmark dataset Recipe1M show the proposed approach outperforms the state-of-the-art approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا