ﻻ يوجد ملخص باللغة العربية
We introduce a method for breaking Lorentz reciprocity based upon the non-commutation of frequency conversion and delay. The method requires no magnetic materials or resonant physics, allowing for the design of scalable and broadband non-reciprocal circuits. With this approach, two types of gyrators --- universal building blocks for linear, non-reciprocal circuits --- are constructed. Using one of these gyrators, we create a circulator with > 15 dB of isolation across the 5 -- 9 GHz band. Our designs may be readily extended to any platform with suitable frequency conversion elements, including semiconducting devices for telecommunication or an on-chip superconducting implementation for quantum information processing.
Space-time modulated metamaterials support extraordinary rich applications, such as parametric amplification, frequency conversion and non-reciprocal transmission. However, experimental realization of space-time modulation is highly non-trivial, hind
The Casimir force and thermal Casimir force originating from quantum electromagnetic fluctuations at zero and non-zero temperatures, respectively, are significant in nano- and microscale systems and are well-understood. Less understood, however, are
We propose a new method for frequency conversion of photons which is both versatile and deterministic. We show that a system with two resonators ultrastrongly coupled to a single qubit can be used to realize both single- and multiphoton frequency-con
High fidelity single-shot readout of qubits is a crucial component for fault-tolerant quantum computing and scalable quantum networks. In recent years, the nitrogen-vacancy (NV) center in diamond has risen as a leading platform for the above applicat
In order for surface scattering models to be accurate they must necessarily satisfy energy conservation and reciprocity principles. Roughness scattering models based on Kirchoffs approximation or perturbation theory do not satisfy these criteria in a