ترغب بنشر مسار تعليمي؟ اضغط هنا

Origins of Life: A Problem for Physics

69   0   0.0 ( 0 )
 نشر من قبل Sara Walker
 تاريخ النشر 2017
  مجال البحث علم الأحياء
والبحث باللغة English
 تأليف Sara I. Walker




اسأل ChatGPT حول البحث

The origins of life stands among the great open scientific questions of our time. While a number of proposals exist for possible starting points in the pathway from non-living to living matter, these have so far not achieved states of complexity that are anywhere near that of even the simplest living systems. A key challenge is identifying the properties of living matter that might distinguish living and non-living physical systems such that we might build new life in the lab. This review is geared towards covering major viewpoints on the origin of life for those new to the origin of life field, with a forward look towards considering what it might take for a physical theory that universally explains the phenomenon of life to arise from the seemingly disconnected array of ideas proposed thus far. The hope is that a theory akin to our other theories in fundamental physics might one day emerge to explain the phenomenon of life, and in turn finally permit solving its origins.



قيم البحث

اقرأ أيضاً

Evolution is the fundamental physical process that gives rise to biological phenomena. Yet it is widely treated as a subset of population genetics, and thus its scope is artificially limited. As a result, the key issues of how rapidly evolution occur s, and its coupling to ecology have not been satisfactorily addressed and formulated. The lack of widespread appreciation for, and understanding of, the evolutionary process has arguably retarded the development of biology as a science, with disastrous consequences for its applications to medicine, ecology and the global environment. This review focuses on evolution as a problem in non-equilibrium statistical mechanics, where the key dynamical modes are collective, as evidenced by the plethora of mobile genetic elements whose role in shaping evolution has been revealed by modern genomic surveys. We discuss how condensed matter physics concepts might provide a useful perspective in evolutionary biology, the conceptual failings of the modern evolutionary synthesis, the open-ended growth of complexity, and the quintessentially self-referential nature of evolutionary dynamics.
Chalmers famously identified pinpointing an explanation for our subjective experience as the hard problem of consciousness. He argued that subjective experience constitutes a hard problem in the sense that its explanation will ultimately require new physical laws or principles. Here, we propose a corresponding hard problem of life as the problem of how `information can affect the world. In this essay we motivate both why the problem of information as a causal agent is central to explaining life, and why it is hard - that is, why we suspect that a full resolution of the hard problem of life will, similar to as has been proposed for the hard problem of consciousness, ultimately not be reducible to known physical principles.
Although it has been notoriously difficult to pin down precisely what it is that makes life so distinctive and remarkable, there is general agreement that its informational aspect is one key property, perhaps the key property. The unique informationa l narrative of living systems suggests that life may be characterized by context-dependent causal influences, and in particular, that top-down (or downward) causation -- where higher-levels influence and constrain the dynamics of lower-levels in organizational hierarchies -- may be a major contributor to the hierarchal structure of living systems. Here we propose that the origin of life may correspond to a physical transition associated with a shift in causal structure, where information gains direct, and context-dependent causal efficacy over the matter it is instantiated in. Such a transition may be akin to more traditional physical transitions (e.g. thermodynamic phase transitions), with the crucial distinction that determining which phase (non-life or life) a given system is in requires dynamical information and therefore can only be inferred by identifying causal architecture. We discuss some potential novel research directions based on this hypothesis, including potential measures of such a transition that may be amenable to laboratory study, and how the proposed mechanism corresponds to the onset of the unique mode of (algorithmic) information processing characteristic of living systems.
241 - Maurizio Serva 2018
The Malagasy language belongs to the Greater Barito East group of the Austronesian family, the language most closely connected to Malagasy dialects is Maanyan (Kalimantan), but Malay as well other Indonesian and Philippine languages are also related. The African contribution is very high in the Malagasy genetic make-up (about 50%) but negligible in the language. Because of the linguistic link, it is widely accepted that the island was settled by Indonesian sailors after a maritime trek but date and place of landing are still debated. The 50% Indonesian genetic contribution to present Malagasy points in a different direction then Maanyan for the Asian ancestry, therefore, the ethnic composition of the Austronesian settlers is also still debated. In this talk I mainly review the joint research of Filippo Petroni, Dima Volchenkov, Soren Wichmann and myself which tries to shed new light on these problems. The key point is the application of a new quantitative methodology which is able to find out the kinship relations among languages (or dialects). New techniques are also introduced in order to extract the maximum information from these relations concerning time and space patterns.
104 - Tomonori Totani 2019
Abiotic emergence of ordered information stored in the form of RNA is an important unresolved problem concerning the origin of life. A polymer longer than 40--100 nucleotides is necessary to expect a self-replicating activity, but the formation of su ch a long polymer having a correct nucleotide sequence by random reactions seems statistically unlikely. However, our universe, created by a single inflation event, likely includes more than $10^{100}$ Sun-like stars. If life can emerge at least once in such a large volume, it is not in contradiction with our observations of life on Earth, even if the expected number of abiogenesis events is negligibly small within the observable universe that contains only $10^{22}$ stars. Here, a quantitative relation is derived between the minimum RNA length $l_{min}$ required to be the first biological polymer, and the universe size necessary to expect the formation of such a long and active RNA by randomly adding monomers. It is then shown that an active RNA can indeed be produced somewhere in an inflationary universe, giving a solution to the abiotic polymerization problem. On the other hand, $l_{min}$ must be shorter than $sim$20 nucleotides for the abiogenesis probability close to unity on a terrestrial planet, but a self-replicating activity is not expected for such a short RNA. Therefore, if extraterrestrial organisms of a different origin from those on Earth are discovered in the future, it would imply an unknown mechanism at work to polymerize nucleotides much faster than random statistical processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا