ﻻ يوجد ملخص باللغة العربية
We study the continuous one-dimensional hard-sphere model and present irreversible local Markov chains that mix on faster time scales than the reversible heatbath or Metropolis algorithms. The mixing time scales appear to fall into two distinct universality classes, both faster than for reversible local Markov chains. The event-chain algorithm, the infinitesimal limit of one of these Markov chains, belongs to the class presenting the fastest decay. For the lattice-gas limit of the hard-sphere model, reversible local Markov chains correspond to the symmetric simple exclusion process (SEP) with periodic boundary conditions. The two universality classes for irreversible Markov chains are realized by the totally asymmetric simple exclusion process (TASEP), and by a faster variant (lifted TASEP) that we propose here. Lifted Markov chains and the recently introduced factorized Metropolis acceptance rule extend the irreversible Markov chains discussed here to general pair interactions and to higher dimensions.
The event-chain Monte Carlo (ECMC) method is an irreversible Markov process based on the factorized Metropolis filter and the concept of lifted Markov chains. Here, ECMC is applied to all-atom models of multi-particle interactions that include the lo
We analyze the convergence of the irreversible event-chain Monte Carlo algorithm for continuous spin models in the presence of topological excitations. In the two-dimensional XY model, we show that the local nature of the Markov-chain dynamics leads
We analyse and interpret the effects of breaking detailed balance on the convergence to equilibrium of conservative interacting particle systems and their hydrodynamic scaling limits. For finite systems of interacting particles, we review existing re
We discuss a canonical structure that provides a unifying description of dynamical large deviations for irreversible finite state Markov chains (continuous time), Onsager theory, and Macroscopic Fluctuation Theory. For Markov chains, this theory invo
An overarching action principle, the principle of minimal free action, exists for ergodic Markov chain dynamics. Using this principle and the Detailed Fluctuation Theorem, we construct a dynamic ensemble theory for non-equilibrium steady states (NESS