ترغب بنشر مسار تعليمي؟ اضغط هنا

Solitons under spatially localized cubic-quintic-septimal nonlinearities

59   0   0.0 ( 0 )
 نشر من قبل Ramaswamy Radha
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore stability regions for solitons in the nonlinear Schrodinger equation with a spatially confined region carrying a combination of self-focusing cubic and septimal terms, with a quintic one of either focusing or defocusing sign. This setting can be implemented in optical waveguides based on colloids of nanoparticles. The solitons stability is identified by solving linearized equations for small perturbations, and is found to fully comply with the Vakhitov-Kolokolov criterion. In the limit case of tight confinement of the nonlinearity, results are obtained in an analytical form, approximating the confinement profile by a delta-function. It is found that the confinement greatly increases the largest total power of stable solitons, in the case when the quintic term is defocusing, which suggests a possibility to create tightly confined high-power light beams guided by the spatial modulation of the local nonlinearity strength.



قيم البحث

اقرأ أيضاً

310 - Y.H. Qin , L.C. Zhao , Z.Y. Yang 2017
We investigate linear interference effects between a nonlinear plane wave and bright solitons, which are admitted by pair-transition coupled two-component Bose-Einstein condensate. We demonstrate the interference effects can induce several localized waves possessing distinctive wave structures, mainly including anti-dark soliton, W-shaped soliton, multi-peak soliton, Kuznetsov-Ma like breather, and multi-peak breather. Especially, the explicit conditions for them are clarified by a phase diagram based on the linear interference properties. Furthermore, the interactions between these localized waves are discussed. The detailed analysis indicate that soliton-soliton interaction induced phase shift brings the collision between these localized waves be inelastic for soliton involving collision, and be elastic for breathers. These characters come from that the profile of solitons depend on relative phase between bright soliton and plane wave, and the profile of breathers do not depend on the relative phase. These results would motivate more discussions on linear interference between other nonlinear waves. Especially, the solitons or breathers obtained here are not related with modulational instability. The underlying reasons are discussed in detail.
We study the dynamics of binary Bose-Einstein condensates made of ultracold and dilute alkali-metal atoms in a quasi-one-dimensional setting. Numerically solving the two coupled Gross-Pitaevskii equations which accurately describe the system dynamics , we demonstrate that the spin transport can be controlled by suitably quenching spin-orbit (SO) and Rabi coupling strengths. Moreover, we predict a variety of dynamical features induced by quenching: broken oscillations, breathers-like oscillating patterns, spin-mixing-demixing, miscible-immiscible transition, emerging dark-bright states, dark solitons, and spin-trapping dynamics. We also outline the experimental relevance of the present study in manipulating the spin states in $^{39}$K condensates.
271 - Nir Dror , Boris A. Malomed 2011
Nonlinear periodic systems, such as photonic crystals and Bose-Einstein condensates (BECs) loaded into optical lattices, are often described by the nonlinear Schrodinger/Gross-Pitaevskii equation with a sinusoidal potential. Here, we consider a model based on such a periodic potential, with the nonlinearity (attractive or repulsive) concentrated either at a single point or at a symmetric set of two points, which are represented, respectively, by a single {delta}-function or a combination of two {delta}-functions. This model gives rise to ordinary solitons or gap solitons (GSs), which reside, respectively, in the semi-infinite or finite gaps of the systems linear spectrum, being pinned to the {delta}-functions. Physical realizations of these systems are possible in optics and BEC, using diverse variants of the nonlinearity management. First, we demonstrate that the single {delta}-function multiplying the nonlinear term supports families of stable regular solitons in the self-attractive case, while a family of solitons supported by the attractive {delta}-function in the absence of the periodic potential is completely unstable. We also show that the {delta}-function can support stable GSs in the first finite gap in both the self-attractive and repulsive models. The stability analysis for the GSs in the second finite gap is reported too, for both signs of the nonlinearity. Alongside the numerical analysis, analytical approximations are developed for the solitons in the semi-infinite and first two finite gaps, with the single {delta}-function positioned at a minimum or maximum of the periodic potential. In the model with the symmetric set of two {delta}-functions, we study the effect of the spontaneous symmetry breaking of the pinned solitons. Two configurations are considered, with the {delta}-functions set symmetrically with respect to the minimum or maximum of the potential.
197 - M. Calzavara , L. Salasnich 2020
We study the dilute and ultracold unitary Bose gas, which is characterized by a universal equation of state due to the diverging s-wave scattering length, under a transverse harmonic confinement. From the hydrodynamic equations of superfluids we deri ve an effective one-dimensional nonpolynomial Schrodinger equation (1D NPSE) for the axial dynamics which, however, takes also into account the transverse dynamics. Finally, by solving the 1D NPSE we obtain meaningful analytical formulas for the dark (gray and black) solitons of the bosonic system.
A study of bright matter-wave solitons of a cesium Bose-Einstein condensate (BEC) is presented. Production of a single soliton is demonstrated and dependence of soliton atom number on the interatomic interaction is investigated. Formation of soliton trains in the quasi one-dimensional confinement is shown. Additionally, fragmentation of a BEC has been observed outside confinement, in free space. In the end a double BEC production setup for studying soliton collisions is described.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا