ﻻ يوجد ملخص باللغة العربية
Surface-phonon polaritons (SPhPs) are attractive alternatives to far-infrared plasmonics for sub-diffractional confinement of light. Localized SPhP resonances in semiconductor nanoresonators are very narrow, but that linewidth and the limited extent of the Reststrahlen band inherently limit spectral coverage. To address this limitation, we report active tuning of SPhP resonances in InP and 4H-SiC by photoinjecting free carriers into the nanoresonators, taking advantage of the coupling between the carrier plasma and optical phonons to blue-shift SPhP resonances. We demonstrate state-of-the-art tuning figures of merit upon continuous-wave (CW) excitation (in InP) or pulsed excitation (in 4H-SiC). Lifetime effects cause the tuning to saturate in InP, and carrier-redistribution leads to rapid (<50 ps) recovery of the tuning in 4H-SiC. This work opens the path toward actively tuned nanophotonic devices, such as modulators and beacons, in the infrared and identifies important implications of coupling between electronic and photonic excitations.
We present combined experimental and numerical work on light-matter interactions at nanometer length scales. We report novel numerical simulations of near-field infrared nanospectroscopy that consider, for the first time, detailed tip geometry and ha
Using the self-consistent Landau-Ginzburg-Devonshire approach we simulate and analyze the spontaneous formation of the domain structure in thin ferroelectric films covered with the surface screening charge of the specific nature (Bardeen-type surface
Ultrafast time-resolved differential reflectivity of Bi2Se3 crystals is studied using optical pump-probe spectroscopy. Three distinct relaxation processes are found to contribute to the initial transient reflectivity changes. The deduced relaxation t
Combining scanning tunneling microscopy and angle-resolved photoemission spectroscopy, we demonstrate how to tune the doping of epitaxial graphene from p to n by exploiting the structural changes that occur spontaneously on the Ge surface upon therma
Polariton relaxation mechanisms are analysed experimentally and theoretically in a ZnO-based polariton laser. A minimum lasing threshold is obtained when the energy difference between the exciton reservoir and the bottom of the lower polariton branch