ترغب بنشر مسار تعليمي؟ اضغط هنا

Unconventional Superconductivity

110   0   0.0 ( 0 )
 نشر من قبل G. R. Stewart
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. R. Stewart




اسأل ChatGPT حول البحث

Conventional superconductivity, as used in this review, refers to electron-phonon coupled superconducting electron-pairs described by BCS theory. Unconventional superconductivity refers to superconductors where the Cooper pairs are not bound together by phonon exchange but instead by exchange of some other kind, e. g. spin fluctuations in a superconductor with magnetic order either coexistent or nearby in the phase diagram. Such unconventional superconductivity has been known experimentally since heavy fermion CeCu2Si2, with its strongly correlated 4f electrons, was discovered to superconduct below 0.6 K in 1979. Since the discovery of unconventional superconductivity in the layered cuprates in 1986, the study of these materials saw Tc jump to 164 K by 1994. Further progress in high temperature superconductivity would be aided by understanding the cause of such unconventional pairing. This review compares the fundamental properties of 9 unconventional superconducting classes of materials - from 4f-electron heavy fermions to organic superconductors to classes where only three known members exist to the cuprates with over 200 examples, with the hope that common features will emerge to help theory explain (and predict!) these phenomena. In addition, three new emerging classes of superconductors (topological, interfacial [e. g. FeSe on SrTiO3], and H2S under high pressure) are briefly covered, even though their conventionality is not yet fully determined.



قيم البحث

اقرأ أيضاً

We report point contact measurements in high quality single crystals of Cu0.2Bi2Se3. We observe three different kinds of spectra: (1) Andreev-reflection spectra, from which we infer a superconducting gap size of 0.6mV; (2) spectra with a large gap wh ich closes above Tc at about 10K; and (3) tunneling-like spectra with zero-bias conductance peaks. These tunneling spectra show a very large gap of ~2meV (2Delta/KTc ~ 14).
We synthesized powder samples of Na$_{x}$CoO$_{2}cdot y$H$_{2}$O changing the volume of the water in the hydration process, then investigated their superconducting properties,. It was proved that the volume of water is one of key parameters to obtain a single phase of Na$_{x}$CoO$_{2}cdot y$H$_{2}$O with good superconducting properties. The transition temperature, $T_{c}$, of the sample changed gradually while it was stored in the atmosphere of 70% humidity. Superconducting behavior under high magnetic field was very sensitive to $T_{c}$. $H_{c2}$ of a high quality sample with high $T_{c}$ seemed very high.
The highly unusual divalent silver in silver difluoride (AgF$_2$) features a nearly square lattice of Ag$^{+2}$ bridged by fluorides. As a structural and electronic analogue of cuprates, its superconducting properties are yet to be examined. Our firs t principles electronic structure calculations reveal a striking resemblance between AgF$_2$ and the cuprates. Computed spin susceptibility shows a magnetic instability consistent with the experimentally observed antiferromagnetic transition. A linearized Eliashberg theory in fluctuation-exchange approximation shows an unconventional singlet $d$-wave superconducting pairing for bulk AgF$_2$ at an optimal electron doping. The pairing is found to strengthen with a decreasing interlayer coupling, highlighting the importance of quasi-2D nature of the crystal structure. These findings place AgF$_2$ in the category of unconventional high-$T_text{C}$ superconductors, and its chemical uniqueness may help shed new lights on the high-$T_text{C}$ phenomena.
The nature of unconventional superconductivity is intimately linked to the microscopic nature of the pairing interactions. In this work, motivated by cubic heavy fermion compounds with embedded multipolar moments, we theoretically investigate superco nducting instabilities instigated by multipolar Kondo interactions. Employing multipolar fluctuations (mediated by RKKY interaction) coupled to conduction electrons via two-channel Kondo and novel multipolar Kondo interactions, we uncover a variety of superconducting states characterized by higher-angular momentum Cooper pairs, $J=0,1,2,3$. We demonstrate that both odd and even parity pairing functions are possible, regardless of the total angular momentum of the Cooper pairs, which can be traced back to the atypical nature of the multipolar Kondo interaction that intertwines conduction electron spin and orbital degrees of freedom. We determine that different (point-group) irrep classified pairing functions may coexist with each other, with some of them characterized by gapped and point node structures in their corresponding quasiparticle spectra. This work lays the foundation for discovery and classification of superconducting states in rare-earth metallic compounds with multipolar local moments.
117 - G. M. Zhao 2001
We have evaluated the total carrier mass enhancement factor f_{t} for MgB_{2} from two independent experiments (specific heat and upper critical field). These experiments consistently show that f_{t} = 3.1pm0.1. The unusually large f_{t} is incompati ble with the measured reduced gap (2Delta (0)/k_{B}T_{c} = 4.1) and the total isotope-effect exponent (alpha = 0.28pm0.04) within the conventional phonon-mediated model. We propose an unconventional phonon-mediated mechanism, which is able to quantitatively explain the values of T_{c}, f_{t}, alpha, and the reduced energy gap in a consistent way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا