ترغب بنشر مسار تعليمي؟ اضغط هنا

Boundary regularity, Pohozaev identities, and nonexistence results

44   0   0.0 ( 0 )
 نشر من قبل Xavier Ros-Oton
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف Xavier Ros-Oton




اسأل ChatGPT حول البحث

In this expository paper we survey some recent results on Dirichlet problems of the form $Lu=f(x,u)$ in $Omega$, $uequiv0$ in $mathbb R^nbackslashOmega$. We first discuss in detail the boundary regularity of solutions, stating the main known results of Grubb and of the author and Serra. We also give a simplified proof of one of such results, focusing on the main ideas and on the blow-up techniques that we developed in cite{RS-K,RS-stable}. After this, we present the Pohozaev identities established in cite{RS-Poh,RSV,Grubb-Poh} and give a sketch of their proofs, which use strongly the fine boundary regularity results discussed previously. Finally, we show how these Pohozaev identities can be used to deduce nonexistence of solutions or unique continuation properties. The operators $L$ under consideration are integro-differential operator of order $2s$, $sin(0,1)$, the model case being the fractional Laplacian $L=(-Delta)^s$.



قيم البحث

اقرأ أيضاً

In this paper we are concerned with a two-penalty boundary obstacle problem of interest in thermics, fluid dynamics and electricity. Specifically, we prove existence, uniqueness and optimal regularity of the solutions, and we establish structural properties of the free boundary.
87 - Peipei Lu , Yun Wang , Xuejun Xu 2018
This paper considers the time-harmonic Maxwell equations with impedance boundary condition.We present $H^2$-norm bound and other high-order norm bounds for strong solutions. The $H^2$-estimate have been derived in [M. Dauge, M. Costabel and S. Nicais e, Tech. Rep. 10-09, IRMAR (2010)] for the case with homogeneous boundary condition. Unfortunately, their method can not be applied to the inhomogeneous case. The main novelty of this paper is that we follow the spirit of the $H^1$-estimate in [R. Hiptmair, A. Moiola and I. Perugia, Math. Models Methods Appl. Sci., 21(2011), pp. 2263-2287] and modify the proof by applying two inequalities of Friedrichs type to make the $H^1$-estimate move into $H^2$-estimate and $W^{m, p}$-estimate.Finally, the dependence of the regularity estimates on the wave number is obtained, which will play an important role in the convergence analysis of the numerical solutions for the time-harmonic Maxwell equations.
We prove full boundary regularity for minimizing biharmonic maps with smooth Dirichlet boundary conditions. Our result, similarly as in the case of harmonic maps, is based on the nonexistence of nonconstant boundary tangent maps. With the help of rec ently derivated boundary monotonicity formula for minimizing biharmonic maps by Altuntas we prove compactness at the boundary following Schevens interior argument. Then we combine those results with the conditional partial boundary regularity result for stationary biharmonic maps by Gong--Lamm--Wang.
In this paper we prove regularity results for a class of nonlinear degenerate elliptic equations of the form $displaystyle -operatorname{div}(A(| abla u|) abla u)+Bleft( | abla u|right) =f(u)$; in particular, we investigate the second order regularit y of the solutions. As a consequence of these results, we obtain symmetry and monotonicity properties of positive solutions for this class of degenerate problems in convex symmetric domains via a suitable adaption of the celebrated moving plane method of Alexandrov-Serrin.
In this paper we are concerned with a class of elliptic differential inequalities with a potential in bounded domains both of $mathbf{R}^m$ and of Riemannian manifolds. In particular, we investigate the effect of the behavior of the potential at the boundary of the domain on nonexistence of nonnegative solutions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا