ﻻ يوجد ملخص باللغة العربية
Coexistence of different geometric shapes at low energies presents a universal structure phenomenon that occurs over the entire chart of nuclides. Studies of the shape coexistence are important for understanding the microscopic origin of collectivity and modifications of shell structure in exotic nuclei far from stability. The aim of this work is to provide a systematic analysis of characteristic signatures of coexisting nuclear shapes in different mass regions, using a global self-consistent theoretical method based on universal energy density functionals and the quadrupole collective model. The low-energy excitation spectrum and quadrupole shape invariants of the two lowest $0^{+}$ states of even-even nuclei are obtained as solutions of a five-dimensional collective Hamiltonian (5DCH) model, with parameters determined by constrained self-consistent mean-field calculations based on the relativistic energy density functional PC-PK1, and a finite-range pairing interaction. The theoretical excitation energies of the states: $2^+_1$, $4^+_1$, $0^+_2$, $2^+_2$, $2^+_3$, as well as the $B(E2; 0^+_1to 2^+_1)$ values, are in very good agreement with the corresponding experimental values for 621 even-even nuclei. Quadrupole shape invariants have been implemented to investigate shape coexistence, and the distribution of possible shape-coexisting nuclei is consistent with results obtained in recent theoretical studies and available data. The present analysis has shown that, when based on a universal and consistent microscopic framework of nuclear density functionals, shape invariants provide distinct indicators and reliable predictions for the occurrence of low-energy coexisting shapes. This method is particularly useful for studies of shape coexistence in regions far from stability where few data are available.
The assessment of the global performance of the state-of-the-art covariant energy density functionals and related theoretical uncertainties in the description of ground state observables has recently been performed. Based on these results, the correl
The quadrupole collective Hamiltonian, based on relativistic energy density functionals, is extended to include a pairing collective coordinate. In addition to quadrupole shape vibrations and rotations, the model describes pairing vibrations and the
Covariant density functional theory (CDFT) is a modern theoretical tool for the description of nuclear structure phenomena. The current investigation aims at the global assessment of the accuracy of the description of the ground state properties of e
The structure of low-lying excitation states of even-even $N=40$ isotones is studied using a five-dimensional collective Hamiltonian with the collective parameters determined from the relativistic mean-field plus BCS method with the PC-PK1 functional
Static and dynamic aspects of the fission process of $^{226}$Th are analyzed in a self-consistent framework based on relativistic energy density functionals. Constrained relativistic mean-field (RMF) calculations in the collective space of axially sy