ﻻ يوجد ملخص باللغة العربية
Earthquakes at seismogenic plate boundaries are a response to the differential motions of tectonic blocks embedded within a geometrically complex network of branching and coalescing faults. Elastic strain is accumulated at a slow strain rate of the order of $10^{-15}$ s$^{-1}$, and released intermittently at intervals $>100$ years, in the form of rapid (seconds to minutes) coseismic ruptures. The development of macroscopic models of quasi-static planar tectonic dynamics at these plate boundaries has remained challenging due to uncertainty with regard to the spatial and kinematic complexity of fault system behaviors. In particular, the characteristic length scale of kinematically distinct tectonic structures is poorly constrained. Here we analyze fluctuations in GPS recordings of interseismic velocities from the southern California plate boundary, identifying heavy-tailed scaling behavior. This suggests that the plate boundary can be understood as a densely packed granular medium near the jamming transition, with a characteristic length scale of $91 pm 20$ km. In this picture fault and block systems may rapidly rearrange the distribution of forces within them, driving a mixture of transient and intermittent fault slip behaviors over tectonic time scales.
Seismogenic plate boundaries are presumed to behave in a similar manner to a densely packed granular medium, where fault and blocks systems rapidly rearrange the distribution of forces within themselves, as particles do in slowly sheared granular sys
The particle discrete element simulation of the instability and failure process of the granular slope accumulator model when the metal plate continues downward is obtained, and the two-dimensional total velocity vector of soil particle velocity and s
We report results of 3D Discrete Element Method (DEM) simulations aiming at investigating the role of the boundary vibration in inducing frictional weakening in sheared granular layers. We study the role of different vibration amplitudes applied at v
The coupled mechanics of fluid-filled granular media controls the behavior of many natural systems such as saturated soils, fault gouge, and landslides. The grain motion and the fluid pressure influence each other: It is well established that when th
We explore interactions of elastic waves propagating in plates (with soil parameters) structured with concrete pillars buried in the soil. Pillars are 2 m in diameter, 30 m in depth and the plate is 50 m in thickness. We study the frequency range 5 t